Skip to main content

Advertisement

Log in

Recent insights, applications and prospects of xylose reductase: a futuristic enzyme for xylitol production

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Xylose reductase (XR) is an intermediate inducible enzyme of xylose metabolism responsible for the reduction of xylose into xylitol. It is an intracellular enzyme present in various facultative bacteria, yeasts, molds and algae in their cytoplasm. The active site of enzyme is polar in nature which is responsible for acid–base catalysis. The enzyme is folded into (β/α)8 barrel and its substrate specificity is through C-terminal region. XR is an emerging industrially important food enzyme due to its major application in production of xylitol. Xylitol has shown remarkable applications in other industrial sectors such as food, biofuels, pharmaceutical, medical, odontological, textiles and cosmetics. This enzyme has been purified and characterized to understand its physico-chemical properties and stability. Further, robust microbial strains with tolerance towards high substrate concentration and toxic compounds are required to be developed for successful exploitation of XR at industrial level using agrowaste materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Abbas C, Dmytruk K, Dmytruk O, Sibirny AA, Voronovsky AY (2016) Engineering of xylose reductase and overexpression of xylitol dehydrogenase and xylulokinase improves xylose alcoholic fermentation in thermotolerant yeast Hansenula polymorpha. US Patent No. 9,228,178

  2. Abbas C, Dmytruk K, Dmytruk O, Sibirny AA, Voronovsky AY (2017) Engineering of xylose reductase and overexpression of xylitol dehydrogenase and xylulokinase improves xylose alcoholic fermentation in thermotolerant yeast Hansenula polymorpha. European Patent No. 2,279,242

  3. Agrawal M, Chen RR (2011) Discovery and characterization of xylose reductase from Zymomonas mobilis ZM4. Biotechnol Lett 33(11):2127–2133

    CAS  PubMed  Google Scholar 

  4. Aguiar C, Oetterer M, Menezes TJB (1999) Caracterizacao e aplicacoes do xylitol na industria alimenticia. Boletim SBCTA 33(2):184–193

    Google Scholar 

  5. Ahmed YM, Ibrahim IH, Khan JA, Kumosani TA (2011) Oxidation and reduction of D-xylose by cell-free extract of Hansenula polymorpha. Aust J Basic Appl Sci 5(12):95–100

    CAS  Google Scholar 

  6. Alexander NJ (1985) Temperature sensitivity of the induction of xylose reductase in Pachysolen tannophilus. Biotechnol Bioeng 27(12):1739–1744

    CAS  PubMed  Google Scholar 

  7. Alexander MA, Chapman TW, Jeffries TW (1988) Xylose metabolism by Candida shehatae in continuous culture. Appl Microbiol Biotechnol 28(4–5):478–486

    CAS  Google Scholar 

  8. Aluckal E, Ankola AV (2019) Effectiveness of xylitol and polyol chewing gum on salivary Streptococcus mutans in children: a randomized controlled trial. Indian J Dent Res 29:445–449

    Google Scholar 

  9. Amoah J, Ogura K, Schmetz Q, Kondo A, Ogino C (2019) Co-fermentation of xylose and glucose from ionic liquid pretreated sugar cane bagasse for bioethanol production using engineered xylose assimilating yeast. Biomass Bioenergy 128:105283

    CAS  Google Scholar 

  10. Anjum A, Chung PY, Ng SF (2019) PLGA/xylitol nanoparticles enhance antibiofilm activity via penetration into biofilm extracellular polymeric substances. RCS Adv 9:14198–14208

    CAS  Google Scholar 

  11. Aristidou A, Penttila M (2000) Metabolic engineering applications to renewable resource utilization. Curr Opin Biotechnol 11(2):187–198

    CAS  PubMed  Google Scholar 

  12. Ariyan M, Uthandi S (2019) Xylitol production by xylose reductase over producing recombinant Escherichia coli M15. Madras Agric J 106:205–209

    Google Scholar 

  13. Attfield PV, Bell PJL (2006) Use of population genetics to derive nonrecombinant Saccharomyces cerevisiae strains that grow using xylose as sole carbon source. FEMS Yeast Res 6(6):862–868

    CAS  PubMed  Google Scholar 

  14. Atzmuller D, Ullmann N, Zwirzitz A (2020) Identification of genes involved in xylose metabolism of Meyerozyma guilliermondii and their genetic engineering for increased xylitol production. AMB Expr 10(78):1–11

    Google Scholar 

  15. Azizah N (2019) Biotransformation of xylitol production from xylose of lignocellulose biomass using xylose reductase enzyme: review. J Food Life Sci 3(2):103–112

    Google Scholar 

  16. Barathikannan K, Khusro A, Paul A (2016) Optimization of parameters to increase the xylose reductase production from Candida tropicalis strain LY15 using corn cob as hemicelluloses waste substrates. Afr J MIcrobiol Res 10(45):1908–1915

    CAS  Google Scholar 

  17. Barathikannan K, Khusro A, Paul A (2016) Simultaneous production of xylitol and ethanol from different hemicellulose waste substrates by Candida tropicalis strain Ly15. J Bioprocess Biotechnol 6(7):1–8

    Google Scholar 

  18. Bhaskar P, Samar BM, Sathyanarayana NG, Narayanan M (2018) Crystal structure of yeast xylose reductase in complex with a novel NADP-DTT adduct provides insights into substrate recognition and catalysis. FEBS J. https://doi.org/10.1111/febs.14667

    Article  Google Scholar 

  19. Bicho PA, Runnals PL, Cunningham JD, Lee H (1988) Induction of xylose reductase and xylitol dehydrogenase activities in Pachysolen tannophilus and Pichia stipitis on mixed sugars. Appl Environ Microbiol 54(1):50–54

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Biswas D, Pandya V, Singh AK, Mondal AK, Kumaran S (2012) Co-factor binding confers substrate specificity to xylose reductase from Debaryomyces hansenii. PLoS ONE 7(9):1–11

    Google Scholar 

  21. Bolen PL, Roth KA, Freer SN (1986) Affinity purifications of aldose reductase and xylitol dehydrogenase from the xylose fermenting yeast Pachysolen tannophilus. Appl Environ Microbiol 52(4):660–664

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Boontham W, Srisuk N, Kokaew K, Treeyoung P, Limtong S, Thamchaipenet A, Yurimoto H (2014) Xylitol production by thermotolerant methylotrophic yeast Ogataea siamensis and its xylose reductase gene (XYL1) cloning. Chiang Mai J Sci 41(3):491–502

    CAS  Google Scholar 

  23. Branco RF, Santos JC, Sarrouh BF, Rivaldi JD Jr, A.P., Silva, S.S. (2009) Profiles of xylose reductase, xylitol dehydrogenase and xylitol production under different oxygen transfer volumetric coefficient values. J Chem Technol Biotechnol 84(3):326–330

    CAS  Google Scholar 

  24. Branco RF, Santos JC, Silva SS (2011) A solid and robust model for xylitol enzymatic production optimization. J Bioprocess Biotech 1(4):1–6

    Google Scholar 

  25. Branden IC (1991) The TIM barrel—the most frequently occurring folding motif in proteins. Curr Opin Struct Biol 1(6):978–983

    Google Scholar 

  26. Brown CL, Graham SM, Cable BB, Ozer EA, Taft PJ, Zabner J (2004) Xylitol enhances bacterial killing in the rabbit maxillary sinus. Laryngoscope 114(11):2021–2024

    CAS  PubMed  Google Scholar 

  27. Bruinenberg PM, Bot PHM, Dijken JP, Scheffers WA (1984) NADH linked aldose reductase: the key to anaerobic alcoholic fermentation of xylose by yeasts. Appl Microbiol Biotechnol 19(4):256–260

    CAS  Google Scholar 

  28. Chi DL, Tut OK, Milgrom P (2014) Cluster-randomized xylitol toothpaste trial for early childhood caries prevention. J Dent Child 81(1):27–32

    Google Scholar 

  29. Chung YS, Kim MD, Lee WJ, Ryu YW, Kim JH, Seo JH (2002) Stable expression of xylose reductase gene enhances xylitol production in recombinant Saccharomyces cerevisiae. Enzyme Microb Technol 30(6):809–816

    CAS  Google Scholar 

  30. Cirino PC, Chin JW, Ingram LO (2006) Engineering Escherichia coli for xylitol production from glucose xylose mixtures. Biotechnol Bioeng 95(6):1167–1176

    CAS  PubMed  Google Scholar 

  31. Clementine T, Yue CC, Xiaoling W, Marine P, Alex H, Larry M, Daniel W, Laetitia GD (2016) Maltitol and xylitol sweetened chewing gums could modulate salivary parameters involved in dental caries prevention. J Interdiscip Med Dent Sci 4(2):1–8

    Google Scholar 

  32. Converti A, Perego P, Dominguez JM (1999) Microaerophilic metabolism of Pachysolen tannophilus at different pH values. Biotechnol Lett 21(8):719–723

    CAS  Google Scholar 

  33. Cortez EV, Pessoa A Jr, Felipe MGA, Roberto IC, Vitolo M (2004) Optimized extraction by cetyl trimethyl ammonium bromide reversed micelles of xylose reductase and xylitol dehydrogenase from Candida guilliermondii homogenate. J Chromatogr B 807(1):47–54

    CAS  Google Scholar 

  34. Costanzo LD, Penning TM, Christianson DW (2009) Aldo-keto reductases in which the conserved catalytic histidine is substituted. Chem Biol Interact 178(1–3):127–133

    PubMed  Google Scholar 

  35. Cunha JT, Soares PO, Romani A, Thevelein JM, Domingues L (2019) Xylose fermentation efficiency of industrial Saccharomyces cerevisiae yeast with separate or combined xylose reductase/xylitol dehydrogenase and xylose isomerase pathways. Biotechnol Biofuels 12(20):1–14

    Google Scholar 

  36. Dahn KM, Davis BP, Pittman PE, Kenealy WR, Jeffries TW (1996) Increased xylose reductase activity in the xylose fermenting yeast Pichia stipitis by overexpression of XYL1. Appl Biochem Biotechnol 57(58):267–276

    PubMed  Google Scholar 

  37. Dasgupta D, Ghosh D, Bandhu S, Agarwal D, Suman SK, Adhikari DK (2016) Purification, characterization and molecular docking study of NADPH dependent xylose reductase from thermotolerant Kluyveromyces sp. IIPE453. Process Biochem. 51(1):124–133

    CAS  Google Scholar 

  38. Dasgupta D, Bandhu S, Adhikari DK, Ghosh D (2017) Challenges and prospects of xylitol production with whole cell bio-catalysts: a review. Microbiol Res 197:9–21

    CAS  PubMed  Google Scholar 

  39. Dijken JP, Scheffers WA (1986) Redox balances in the metabolism of sugars by yeasts. FEMS Microbiol Lett 32(3–4):199–224

    Google Scholar 

  40. Ditzelmuller G, Kubicek CP, Wohrer W, Rohr M (1984) Xylose metabolism in Pachysolen tannophilus: purification and properties of xylose reductase. Can J Microbiol 30(11):1330–1336

    Google Scholar 

  41. Ellis EM (2002) Microbial aldo-keto reductases. FEMS Microbiol Lett 216(2):123–131

    CAS  PubMed  Google Scholar 

  42. Erdei B, Franco B, Galbe M, Zacchi G (2013) Glucose and xylose co-fermentation of pretreated wheat straw using mutants of Saccharomyces cerevisiae TMB 3400. J Biotechnol 164(1):50–58

    CAS  PubMed  Google Scholar 

  43. Eryasar K, Yalcin SK (2016) Evaluation of some lignocellulosic byproducts of food industry for microbial xylitol production. 3 Biotech 6(2):1–7

    Google Scholar 

  44. Fernandes S, Tuohy MG, Murray PG (2009) Xylose reductase from the thermophilic fungus Talaromyces emersonii: cloning and heterologous expression of native gene (Texr) and a double mutant (Texr K271R+N273D) with altered coenzyme specificity. J Biosci 34(6):881–890

    CAS  PubMed  Google Scholar 

  45. Gardonyi M, Osterberg M, Rodrigues C, Martins IS, Hagerdal BH (2003) High capacity xylose transport in Candida intermedia PYCC 4715. FEMS Yeast Res 3(1):45–52

    CAS  PubMed  Google Scholar 

  46. Ge J, Du R, Song G, Zhang Y, Ping W (2017) Metabolic pathway analysis of xylose-metabolizing yeast protoplast fusant ZLYRHZ7. J Biosci Bioeng 20(20):1–6

    Google Scholar 

  47. Mamtani K, Ahuja K (2020) Xylitol market size by application. Report ID: GMI795 Global Market Insights. https://www.gminsights.com/industry-analysis/xylitol-market. Accessed 20 Nov 2020

  48. Granstrom T, Airaksinen U, Wu XY, Leisola M (2002) Candida guilliermondii grows on rare pentoses—implications for production of pure xylitol. Biotechnol Lett 24(7):507–510

    CAS  Google Scholar 

  49. Granstrom TB, Izumori K, Leisola M (2007) A rare sugar xylitol. Part I: the biochemistry and biosynthesis of xylitol. Appl Microbiol Biotechnol 74(2):277–281

    PubMed  Google Scholar 

  50. Granstrom TB, Izumori K, Leisola M (2007) A rare sugar xylitol. Part II: biotechnological production and future applications of xylitol. Appl Microbiol Biotechnol 74(2):273–276

    PubMed  Google Scholar 

  51. Grauslund MFG, Jeppson M (2011) Mutated xylose reductase in xylose fermentation by S. cerevisiae. European Patent No. 1,727,890

  52. Gross W, Seipold P, Schnarrenberger C (1997) Characterization and purification of an aldose reductase from the acidophilic and thermophilic red alga Galdieria sulphuraria. Plant Physiol 114(1):231–236

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Guo C, Zhao C, He P, Lu D, Shen A, Jiang N (2006) Screening and characterization of yeasts for xylitol production. J Appl Microbiol 101(5):1096–1104

    CAS  PubMed  Google Scholar 

  54. Gurpilhares DB, Hasmann FA, Pessoa A, Roberto IC (2009) The behavior of key enzymes of xylose metabolism on the xylitol production by Candida guilliermondii grown in hemicellulosic hydrolysate. J Ind Microbiol Biotechnol 36(1):87–93

    CAS  PubMed  Google Scholar 

  55. Hagerdal BH, Jeppsson H, Skoog K, Prior BA (1994) Biochemistry and physiology of xylose fermentation by yeasts. Enzyme Microb Technol 16(11):933–943

    Google Scholar 

  56. Hagerdal BH, Wahlborn CF, Gardonyi M, Zyl HH, Otero RRC, Jonsson LJ (2001) Metabolic engineering of Saccharomyces cerevisiae for xylose utilization. Adv Biochem Eng Biotechnol 73:53–84

    Google Scholar 

  57. Hallborn J, Walfridsson M, Airaksinen U, Ojamo H, Hagerdal BH, Penttila M, Kerasnen S (1991) Xylitol production by recombinant Saccharomyces cerevisiae. Biotechnology 9(11):1090–1095

    CAS  PubMed  Google Scholar 

  58. Hallborn J, Penttila M, Ojamo H, Walfridsson M, Airaksinen U, Keranen S, Hagerdal BH (1999) Xylose utilization by recombinant yeasts. US Patent No. 5,866,382

  59. Hallborn J, Penttila M, Ojamo H, Walfridsson M, Airaksinen U, Keranen S, Hagerdal BH (2003) Production of ethanol from xylose. US Patent No. 6,582,944

  60. Hallborn J, Penttila M, Ojamo H, Walfridsson M, Airaksinen U, Keranen S, Hagerdal BH (2004) Recombinant yeasts containing the DNA sequences coding for xylose reductase and xylitol dehydrogenase enzymes. European Patent No. 0,527,758

  61. Handumrongkul C, Ma DP, Silva JL (1998) Cloning and expression of Candida guilliermondii xylose reductase gene (xyl1) in Pichia pastoris. Appl Microbiol Biotechnol 49(4):399–404

    CAS  PubMed  Google Scholar 

  62. Hasunuma T, Hori Y, Sakamoto T, Ochiai M, Hatanaka H, Kondo A (2014) Development of GIN11/FRT based multiple gene integration technique affording inhibitor tolerant, hemicellulolytic, xylose utilizing abilities to industrial Saccharomyces cerevisiae strains for ethanol production from undetoxified lignocellulosic hemicelluloses. Microb Cell Fact 13(145):1–12

    Google Scholar 

  63. Hasunuma T, Ismail KSK, Nambu Y, Kondo A (2014) Co-expression of TAL1 and ADH1 in recombinant xylose fermenting Saccharomyces cerevisiae improves ethanol production from lignocellulosic hydrolysates in the presence of furfural. J Biosci Bioeng 117(2):165–169

    CAS  PubMed  Google Scholar 

  64. Hickert LR, Pereira FC, Cruz PBS, Rosa CA, Ayub MAZ (2013) Ethanogenic fermentation of co-cultures of Candida shehatae HM52.2 and Saccharomyces cerevisiae ICVD254 in synthetic medium and rice hull hydrolysate. Bioresour Technol 131:508–514

    CAS  PubMed  Google Scholar 

  65. Ho NWY, Lin FP, Huang S, Andrews PC, Tsao GT (1990) Purification, characterization and amino terminal sequence of xylose reductase from Candida shehatae. Enzyme Microb Technol 12(1):33–39

    CAS  PubMed  Google Scholar 

  66. Ho NWY, Tsao GT (1998) Recombinant yeasts for effective fermentation of glucose and xylose. US Patent No. 5,789,210

  67. Ho NWY, Chen ZD (2009) Stable recombinant yeasts for fermenting xylose to ethanol. US Patent No. 7,527,927

  68. Ho NWY, Chen ZD (2014) Stable recombinant yeasts for fermenting xylose to ethanol. US Patent No. 8,652,772

  69. Hofer M, Betz A, Kotyk A (1971) Metabolism of the obligatory aerobic yeast Rhodotorula gracilis IV. Induction of an enzyme necessary for d-xylose catabolism. Biochem Biophys Acta 252(1):1–12

    CAS  PubMed  Google Scholar 

  70. Hong Y, Dashtban M, Kepka G, Chen S, Qin W (2014) Overexpression of D-xylose reductase (xyl1) gene and antisense inhibition of d-xylulokinase (xyiH) gene increase xylitol production in Trichoderma reesei. BioMed Res Int 2014:1–8

    Google Scholar 

  71. Horitsu H, Yahashi Y, Takamizawa K, Kawai K, Suzuki T, Watanabe N (1992) Production of xylitol from d-xylose by Candida tropicalis: optimization of production rate. Biotechnol Bioeng 40(9):1085–1091

    CAS  PubMed  Google Scholar 

  72. Industrial Enzyme Market Report (2020) https://www.marketsandmarkets.com

  73. Izumori K, Tuzaki K (1988) Production of xylitol from d-xylulose by Mycobacterium smegmatis. J Ferment Technol 66(1):33–36

    CAS  Google Scholar 

  74. Jayadevan A, Chakravarthy D, Padmaraj SN, Raja SV, Bal L, Dimple N (2019) Dental caries and sugar substitutes: a review. J Dent Med Sci 18(5):13–23

    Google Scholar 

  75. Jeffries TW, Ni H, Laplaza JM (2007) Xylose fermenting recombinant yeast strains. US Patent No. 7,285,403

  76. Jeon WY, Yoon BH, Ko BS, Shim WY, Kim JH (2012) Xylitol production is increased by expression of codon-optimized Neurospora crassa xylose reductase gene in Candida tropicalis. Bioprocess Biosyst Eng 35(1–2):191–198

    CAS  PubMed  Google Scholar 

  77. Jeppsson M, Traff K, Johansson B, Hagerdal BH, Grauslund MFG (2003) Effect of enhanced xylose reductase activity on xylose consumption and product distribution in xylose fermenting recombinant Saccharomyces cerevisiae. FEMS Yeast Res 3(2):167–175

    CAS  PubMed  Google Scholar 

  78. Jez JM, Bennett MJ, Schlegel BP, Lewis M, Penning TM (1997) Comparative anatomy of the aldo-keto reductase superfamily. Biochem J 326(3):123–131

    Google Scholar 

  79. Jo JH, Park YC, Jin YS, Seo JH (2017) Construction of efficient xylose-fermenting Saccharomyces cerevisiae through a synthetic isozyme system of xylose reductase from Scheffersomyces stipitis. Bioresour Technol 241:88–94

    CAS  PubMed  Google Scholar 

  80. Kaneda J, Sasaki K, Gomi K, Shintani T (2011) Heterologous expression of Aspergillus oryzae xylose reductase and xylitol dehydrogenase genes facilitated xylose utilization in the yeast Saccharomyces cerevisiae. Biosci Biotechnol Biochem 75(1):168–170

    CAS  PubMed  Google Scholar 

  81. Kang Q, Appels L, Tan T, Dewil R (2014) Bioethanol from lignocellulosic biomass: current findings determine research priorities. Sci World J 2014:1–13

    CAS  Google Scholar 

  82. Kang TZ, Mohammad SH, Murad AMA, Illis RM, Jahim JM (2016) Fermentative production of xylitol: a first trial on xylose bifurcation. Indian J Sci Technol 9(21):1–5

    Google Scholar 

  83. Kapoor R, Matzger LE (2008) Process cheese: scientific and technological aspects: a review. Compr Rev Food Sci Food Saf 7(2):194–214

    CAS  Google Scholar 

  84. Kar JR, Singhal RS (2014) Investigation on ideal mode of cell disruption in extremely halophilic Actinopolyspora halophila (MTCC 263) for efficient release of glycine betaine and trehalose. Biotechnol Rep 5:89–97

    Google Scholar 

  85. Kauldhar BS, Sooch BS (2016) Tailoring nutritional and process variables for hyperproduction of catalase from a novel isolated bacterium Geobacillus sp. BSS-7. Microb Cell Fact 17(7):1–16

    Google Scholar 

  86. Kauldhar BS, Dhau JS, Sooch BS (2016) Covalent linkage of alkalothermophilic catalase onto functionalized cellulose. RSC Adv 6(45):39364–39375

    CAS  Google Scholar 

  87. Kavanagh KL, Klimacek M, Nidetzky B, Wilson DK (2002) The structure of apo and holo forms of xylose reductase, a dimeric aldo-keto reductase from Candida tenuis. Biochem J 41(28):8785–8795

    CAS  Google Scholar 

  88. Kavanagh KL, Klimacek M, Nidetzky B, Wilson DK (2003) Structure of xylose reductase bound to NAD+ and the basis for single and dual co-substrate specificity in family 2 aldo-keto reductases. Biochem J 373(2):319–326

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Kern M, Haltrich D, Nidetzky B, Kulbe KD (1997) Induction of aldose reductase and xylitol dehydrogenase activities in Candida tenuis CBS 4435. FEMS Microbiol Lett 149(1):31–37

    CAS  PubMed  Google Scholar 

  90. Kern M, Nidetzky B, Kulbe KD, Haltrich D (1998) Effect of nitrogen sources on the levels of aldose reductase and xylitol dehydrogenase activities in the xylose fermenting yeast Candida tenuis. J Ferment Bioeng 85(2):196–202

    CAS  Google Scholar 

  91. Khattab SMR, Watanabe S, Saimura M, Kodaki T (2011) A novel strictly NADPH-dependent Pichia stipitis xylose reductase constructed by site-directed mutagenesis. Biochem Biophys Res Commun 404(2):634–637

    CAS  PubMed  Google Scholar 

  92. Khoury GA, Fazelinia H, Chin JW, Pantazes RJ, Cirino PC, Maranas CD (2009) Computational design of Candida boidinii xylose reductase for altered cofactor specificity. Protein Sci 18(10):2125–2138

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Kim S, Dale BE (2004) Global potential bioethanol production from wasted crops and crop residues. Biomass Bioenergy 26(4):361–375

    Google Scholar 

  94. Kim SH, Yun JY, Kim SG, Seo JH, Park JB (2010) Production of xylitol from d-xylose with recombinant Corynebacterium glutamicum. Enzyme Microb Technol 46(5):366–371

    CAS  Google Scholar 

  95. Kim JS, Park JB, Jang SW, Ha SJ (2015) Enhanced xylitol production by mutant Kluyveromyces marxianus 36907-FMEL1 due to improved xylose reductase activity. Appl Biochem Biotechnol 176(7):1975–1984

    CAS  PubMed  Google Scholar 

  96. Kim S, Lee J, Sung BH (2019) Isolation and characterization of the stress-tolerant Candida tropicalis YHJ1 and evaluation of its xylose reductase for xylitol production from acid pre-treatment wastewater. Front Bioeng Biotechnol 7(138):1–12

    Google Scholar 

  97. Kinami Y, Kitagawa I (1969) Fluctuation of blood sugar, urine sugar and ketone body levels in surgical stress and application of xylitol. Shujutsu 23(11):1487–1491

    CAS  PubMed  Google Scholar 

  98. Klaassen P, Gielesen BEM, Suylekom GPV, Heihne WHM (2016) Cell suitable for fermentation of a mixed sugar composition. US Patent No. 9,499,841

  99. Klimacek M, Szekely M, Griebler R, Nidetzky B (2001) Exploring the active site of yeast xylose reductase by site-directed mutagenesis of sequence motifs characteristics of two dehydrogenase/reductase family types. FEBS Lett 500(3):149–152

    CAS  PubMed  Google Scholar 

  100. Kogje A, Ghosalkar A (2016) Xylitol production by Saccharomyces cerevisiae overexpressing different xylose reductases using non-detoxified hemicellulosic hydrolysate of corncob. 3 Biotech 6(2):1–10

    Google Scholar 

  101. Kokaew K, Srisuk N, Limtong S, Thamchaipenet A (2009) Cloning and nucleotide sequence analysis of xylose reductase gene from thermotolerant methylotrophic yeast Ogataea siamensis N22. Thai J Genet 2(1):66–71

    Google Scholar 

  102. Komeda H, Yashiki SY, Hoshino K, Asano Y (2015) Identification and characterization of D-xylose reductase involved in pentose catabolism of the zygomycetous fungus Rhizomucor pusillus. J Biosci Bioeng 119(1):57–64

    CAS  PubMed  Google Scholar 

  103. Kommineni A, Amamcharla J, Metzger LE (2012) Effect of xylitol on the functional properties of low-fat process cheese. J Dairy Sci 95(11):6252–6259

    CAS  PubMed  Google Scholar 

  104. Koppram R, Nielsen F, Alberts E, Lambert A, Wannstrom S, Welin L, Zacchi G, Olsson L (2013) Simultaneous saccharification and co-fermentation for bioethanol production using coenconbs at lab PDU and demo scales. Biotechnol Biofuel 6(2):1–10

    Google Scholar 

  105. Kratzer R, Kavanagh KL, Wilson DK, Nidetzky B (2004) Studies of the enzymatic mechanism of Candida tenuis xylose reductase (AKR2B5): X-ray structure and catalytic reaction profile for the H113A mutant. Biochemistry 43(17):4944–4954

    CAS  PubMed  Google Scholar 

  106. Kratzer R, Wilson DK, Nidetzky B (2006) Catalytic mechanism and substrate selectivity of aldo-keto reductase: Insights from structure-function studies of Candida tenuis xylose reductase. IUBMB Life 58(9):499–507

    CAS  PubMed  Google Scholar 

  107. Kuhn A, Zyl C, Tonder AV, Prior BA (1995) Purification and partial characterization of an aldo-keto reductase from Saccharomyces cerevisiae. Appl Environ Microbiol 61(4):1580–1585

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Kumar S, Gummadi SN (2011) Purification and biochemical characterization of a moderately halotolerant NADPH dependent xylose reductase from Debaryomyces nepalensis NCYC 3413. Bioresour Technol 102(20):9710–9717

    CAS  PubMed  Google Scholar 

  109. Kwak S, Jin YS (2017) Production of fuels and chemicals from xylose by engineered Saccharomyces cerevisiae: a review and perspective. Microb Cell Fact 16(1):1–15

    Google Scholar 

  110. Kwak S, Jo JH, Yun EJ, Jin YS, Seo JH (2019) Production of biofuels and chemicals from xylose using native and engineered yeast strains. Biotechnol Adv 37(2):271–283

    CAS  PubMed  Google Scholar 

  111. Ladisch MR, Lin KW, Voloch M, Tsao GT (1983) Process considerations in the enzymatic hydrolysis of biomass. Enzyme Microb Technol 5(2):82–102

    CAS  Google Scholar 

  112. Lakshmi SV, Yadav HKS, Mahesh KP, Raizaday A, Manne N, Ayaz A, Nagavarma NBV (2014) Medicated chewing gum: an overview. J Dental Sci 2(2):50–64

    Google Scholar 

  113. Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) Procheck: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26:283–291

    CAS  Google Scholar 

  114. LeBrun LA, Park DH, Ramaswamy S, Plapp BV (2004) Participation of histidine-51 in catalysis by horse liver alcohol dehydrogenase. Biochemistry 43(1):3014–3026

    CAS  PubMed  Google Scholar 

  115. Lee H, Sopher CR, Yau KYF (1996) Induction of xylose reductase and xylitol dehydrogenase activities on mixed sugars in Candida guilliermondii. J Chem Technol Biotechnol 65(4):375–379

    CAS  Google Scholar 

  116. Lee H (1998) The structure and function of yeast xylose (aldose) reductases. Yeast 14(11):977–984

    CAS  PubMed  Google Scholar 

  117. Lee JK, Koo BS, Kim SY (2003) Cloning and characterization of the xyl1 gene, encoding an NADH preferring xylose reductase from Candida parapsilosis, and its functional expression in Candida tropicalis. Appl Environ Microbiol 69(10):6179–6188

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Li BZ, Balan V, Yuan YJ, Dale BE (2010) Process optimization to convert forage and sweet sorghum bagasse to ethanol based on ammonia fiber expansion (AFEX) pretreatment. Bioresour Technol 101(4):1285–1292

    CAS  PubMed  Google Scholar 

  119. Liang L, Zhang J, Lin Z (2007) Altering coenzyme specificity of Pichia stipitis xylose reductase by the semi rational approach CASTing. Microb Cell Fact 6(36):1–11

    Google Scholar 

  120. Liang M, He QP, Wang J (2014) Understanding xylose metabolism of Scheffersomyces stipitis through a central carbon metabolic network model. Adv Chem Eng Res 3:8–17

    CAS  Google Scholar 

  121. Ligthelm ME, Prior BA, Preez JC, Brandt V (1988) An investigation of G-(1–13C) xylose metabolism in Pichia stipitis under aerobic and anaerobic conditions. Appl Microbiol Biotechnol 28(3):293–296

    CAS  Google Scholar 

  122. Lima LHA, Felipe MGA, Vitolo M, Torres FAG (2004) Effect of acetic acid present in bagasse hydrolysate on the activities of xylose reductase and xylitol dehydrogenase in Candida guilliermondii. Appl Microbiol Biotechnol 65(6):734–738

    CAS  PubMed  Google Scholar 

  123. Liu W, Wang P (2007) Cofactor regeneration for sustainable enzymatic biosynthesis. Biotechnol Adv 25(4):369–384

    CAS  PubMed  Google Scholar 

  124. Lorliam W, Akaracharanya A, Jindamorakot S, Suwannarangsee S, Tanasupawat S (2013) Characterization of xylose utilizing yeasts isolated from herbivore faeces in Thailand. Sci Asia 39:26–35

    CAS  Google Scholar 

  125. Luccio ED, Elling RA, Wilson DK (2006) Identification of a novel NADH-specific aldo-keto reductase using sequence and structural homologies. Biochem J 400(1):105–114

    PubMed  PubMed Central  Google Scholar 

  126. Lugani Y, Singla S, Sooch BS (2015) Optimization of cellulase production from newly isolated Bacillus sp. Y3. J Bioprocess Biotechnol 5(11):1–6

    Google Scholar 

  127. Lugani Y, Oberoi S, Sooch BS (2017) Xylitol: a sugar substitute for patients of diabetes mellitus. World J Pharm Pharm Sci 6(4):741–749

    CAS  Google Scholar 

  128. Lugani Y, Sooch BS (2017) Development of cell disruption strategy for enhanced release of intracellular xylose reductase from Pseudomonas putida BSX-46. Int J Curr Microbiol Appl Sci 6(8):3682–3697

    Google Scholar 

  129. Lugani Y, Sooch BS (2020) Fermentative production of xylitol from a newly isolated xylose reductase producing Pseudomonas putida BSX-46. LWT Food Sci Technol 134:109988

    CAS  Google Scholar 

  130. Lunzer R, Mamnun Y, Haltrich D, Kulbe KD, Nidetzky B (1998) Structural and functional properties of a yeast xylitol dehydrogenase, A Zn2+ containing metalloenzyme similar to medium chain sorbitol dehydrogenases. Biochem J 336(1):91–99

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Maas RHW, Springer J, Eggink G, Weusthuis RA (2008) Xylose metabolism in the fungus Rhizopus oryzae: effect of growth and respiration on l(+)-lactic acid production. J Ind Microbiol Biotechnol 35(6):569–578

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Makinen KK (2000) The rocky road of xylitol to its clinical application. J Dental Res 79(6):1352–1355

    CAS  Google Scholar 

  133. Manaf SFA, Jahim JM, Harun S, Luthfi AAI (2018) Fractionation of oil palm fronds (OPF) hemicelluloses using dilute nitric acid for fermentative production of xylitol. Ind Crop Prod 115:6–15

    Google Scholar 

  134. Marie KW, Hussein FK, Khalida AS (2018) Production of xylitol from agricultural waste by enzymatic methods. Am J Agric Biol Sci 13(1):1–8

    Google Scholar 

  135. Matsushika A, Sawayama S, Inoue H, Makino K, Watanabe S (2013) Hexose pentose cofermenting yeast having excellent xylose fermentability and method for highly efficiently producing ethanol using the same. US Patent No. 8,445,243

  136. Mayerhoff ZDVL, Roberto IC, Franco TT (2004) Purification of xylose reductase from Candida mogii in aqueous two-phase systems. Biochem Eng J 18(3):217–223

    CAS  Google Scholar 

  137. Mayr P, Bruggler K, Kulbe KD, Nidetzky B (2000) d-Xylose metabolism by Candida intermedia: isolation and characterization of two forms of aldose reductase with different coenzyme specificities. J Chromatogr B Biomed Appl 737(1–2):195–202

    CAS  Google Scholar 

  138. Mayr P, Petschacher B, Nidetzky B (2003) Xylose reductase from the Basidiomycete fungus Cryptococcus flavus: purification, steady-state kinetic characterization and detailed analysis of the substrate binding pocket using structure-activity relationships. J Biochem 133(4):553–562

    CAS  PubMed  Google Scholar 

  139. Mertens R, Greiner L, Ban ECD, Haaker HBCM, Liese A (2003) Practical applications of hydrogenase I from Pyrococcus furiosus for NADPH generation and regeneration. J Mol Catal B Enzym 24–25:39–52

    Google Scholar 

  140. Milessi TSS, Chandel AK, Branco RF, Silva SS (2011) Effect of dissolved oxygen and inoculum concentration on xylose reductase production from Candida guillermondii using sugarcane baggase hemicellulosic hydrolysate. Food Nutr Sci 2(3):235–240

    CAS  Google Scholar 

  141. Mindnich RD, Penning TM (2009) Aldo-keto reductase (AKR) superfamily: Genomics and annotation. Hum Genom 3(4):362–370

    CAS  Google Scholar 

  142. Misra S, Raghuwanshi S, Saxena RK (2012) Fermentation behavior of an osmotolerant yeast D. hansenii for xylitol production. Biotechnol Prog 28(6):1457–1465

    CAS  PubMed  Google Scholar 

  143. Mouro A, Santos AA, Agnolo DD, Gubert GF, Bon EPS, Rosa CA, Fonseca C, Stambuk BU (2020) Combining xylose reductase from Spathaspora arborariae with xylitol dehydrogenase from Spathaspora passalidarum to promote xylose consumption and fermentation into xylitol by Saccharomyces cerevisiae. Fermentation 6(72):1–14

    Google Scholar 

  144. Moyses DN, Reis VCB, Almeida JRM, Moraes LMP, Torres FAG (2016) Xylose fermentation by Saccharomyces cerevisiae: challenges and prospects. Int J Mol Sci 17(3):1–18

    Google Scholar 

  145. Mueller M, Wilkins MR, Banat IM (2011) Production of xylitol by the thermotolerant Kluyveromyces marxianus IMB strains. J Bioprocess Biotechnol 1(2):1–5

    Google Scholar 

  146. Muthukumar H, Malla S, Manickam M, Gummadi SN (2019) Immobilization of xylose reductase enzyme on cysteine-functionalized Murraya koenigii mediated magnetite nanoparticles. Mater Lett. https://doi.org/10.1016/j.matlet.2019.127125

    Article  Google Scholar 

  147. Neuhauser W, Haltrich D, Kulbe KD, Nidetzky B (1997) NAD(P)H-dependent aldose reductase from the xylose-assimilating yeast Candida tenuis. Biochem J 326(3):683–692

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Nigam P, Singh D (1995) Processes for fermentative production of xylitol-A sugar substitute. Process Biochem 30(2):117–124

    CAS  Google Scholar 

  149. Nyyssola A, Pihlajaniemi A, Palva A, Weymarn N, Leisola M (2005) Production of xylitol from d-xylose by recombinant Lactococcus lactis. J Biotechnol 118(1):55–66

    PubMed  Google Scholar 

  150. Oliveira DM, Mota TR, Salatta FV, Marchiosi R, Gomez LD, McQueen-Mason SJ, Ferrarese-Filho O, Santos W (2019) Designing xylan for improved biofuel production. Plant Biotechnol J 17:2225–2227

    PubMed  PubMed Central  Google Scholar 

  151. Olofsson K, Wiman M, Liden G (2010) Controlled feeding of cellulases improves conversion of xylose in simultaneous saccharification and co-fermentation for bioethanol production. J Biotechnol 145(2):168–175

    CAS  PubMed  Google Scholar 

  152. Otero RRC, Hagerdal BH, Zyl WHV (2009) Recombinant yeast for lignocellulose raw materials. US Patent No. 7,531,348

  153. Paidimuddala B, Rathod A, Gummadi SN (2017) Inhibition of Debaryomyces nepalensis xylose reductase by lignocellulose derived by-products. Biochem Eng J 121:73–82

    CAS  Google Scholar 

  154. Panagiotou G, Christakopoulos P (2004) NADPH-dependent d-aldoses and xylose fermentation in Fusarium oxysporum. J Biosci Bioeng 97(5):299–304

    CAS  PubMed  Google Scholar 

  155. Parajo JC, Dominguez H, Dominguez JM (1998) Biotechnological production of xylitol. Part 1: interest of xylitol and fundamentals of its biosynthesis. Bioresour Technol 65(3):191–201

    CAS  Google Scholar 

  156. Patino MA, Ortiz JP, Velasquez M, Stambuk B (2019) d-Xylose consumption by nonrecombinant Saccharomyces cerevisiae: a review. Yeast 36:541–556

    CAS  Google Scholar 

  157. Pejo ET, Oliva JM, Ballesteros M (2008) Realistic approach for full-scale bioethanol production from lignocellulose: a review. J Sci Ind Res 67(11):874–884

    Google Scholar 

  158. Pereira AFF, Silva TC, Silva TL, Caldana ML, Baston JRM, Buzalaf MAR (2012) Xylitol concentrations in artificial saliva after application of different xylitol dental varnishes. J Appl Oral Sci 20(2):146–150

    PubMed Central  Google Scholar 

  159. Perez AFH, Arruda AV, Felipe MGA (2016) Sugarcane straw as a feedstock for xylitol production by Candida guilliermondii FTI 20037. Braz J Microbiol 47(2):489–496

    Google Scholar 

  160. Petschacher B, Nidetzky B (2005) Engineering Candida tenuis xylose reductase for improved utilization of NADH: antagonistic effects of multiple side chain replacements and performance of site-directed mutants under simulated in vivo conditions. Appl Environ Microbiol 71(10):6390–6393

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Petschacher B, Leitgeb S, Kavanagh KL, Wilson DK, Nidetzky B (2005) The coenzyme specificity of Candida tenuis xylose reductase (AKR2B5) explored by site directed mutagenesis and X-ray crystallography. Biochem J 385:75–83

    CAS  PubMed  Google Scholar 

  162. Prakasham RS, Rao RS, Hobbs PJ (2009) Current trends in biotechnological production of xylitol and future prospects. Curr Trends Biotechnol Pharm 3(1):8–36

    CAS  Google Scholar 

  163. Prathumpai W, Gabelgaard JB, Wanchanthuek P, Vondervoort PJI, Groot MJL, McIntyre M, Nielsen J (2003) Metabolic control analysis of xylose catabolism in Aspergillus. Biotechnol Prog 19(4):1136–1141

    CAS  PubMed  Google Scholar 

  164. Pratter SM, Eixelsberger T, Nidetzky B (2015) Systematic strain construction and process development: Xylitol production by Saccharomyces cerevisiae expressing Candida tenuis xylose reductase in wild type or mutant form. Bioresour Technol 198:732–738

    CAS  PubMed  Google Scholar 

  165. Puri M, Banerjee UC (2000) Production, purification, and characterization of the debittering enzyme naringinase. Biotechnol Adv 18(3):207–217

    CAS  PubMed  Google Scholar 

  166. Puri M, Sharma D, Barrow C, Tiwary AK (2011) Downstream processing of stevioside and its potential applications. Biotechnol Adv 29(6):781–791

    CAS  PubMed  Google Scholar 

  167. Puri M, Sharma D, Barrow C, Tiwary AK (2012) Optimization of novel method for the extraction of stevioside from S. rebudiana leaves. Food Chem. 132(3):1113–1120

    CAS  PubMed  Google Scholar 

  168. Quehenberger J, Reichenbach T, Baumann N, Rettenbacher L, Divne C, Spadiut O (2019) Kinetics and predicted structure of a novel xylose reductase from Chaetomium thermophilum. Int J Mol Sci 20(125):1–17

    Google Scholar 

  169. Rafiqul ISM, Sakinah AMM (2012) A perspective: bioproduction of xylitol by enzyme technology and future prospects. Int Food Res J 19(2):405–408

    CAS  Google Scholar 

  170. Rafiqul ISM, Sakinah AMM (2014) Production of xylose reductase from adapted Candida tropicalis grown in seadust hydrolysate. Biocatal Agric Biotechnol 3(4):227–235

    Google Scholar 

  171. Rafiqul ISM, Sakinah AMM, Zularisam AW (2015) Inhibition by toxic compounds in the hemicellulosic hydrolysates on the activity of xylose reductase from Candida tropicalis. Biotechnol Lett 37(1):191–196

    CAS  PubMed  Google Scholar 

  172. Rangaswamy S, Agblevor FA (2002) Screening of facultative anaerobic bacteria utilizing d-xylose for xylitol production. Appl Microbiol Biotechnol 60(1–2):88–93

    CAS  PubMed  Google Scholar 

  173. Rawat UB, Rao MB (1996) Purification, kinetic characterization and involvement of tryptaphan residue at the NADPH binding site of xylose reductase from Neurospora crassa. Biochim Biophys Acta 1293(2):222–230

    PubMed  Google Scholar 

  174. Rehman S, Mushtaq Z, Zahoor T, Jamil A, Murtaza MA (2015) Xylitol: A review on bio-production, application, health benefits and related safety issues. Crit Rev Food Sci Nutr 55(11):1514–1528

    Google Scholar 

  175. Rajapaksha SM, Gerken K, Archer T, Lathan P, Liyanage AS, Mlsna D, Mlsna TE (2019) Extraction and analysis of xylitol in sugar-free gum samples by GC-MS with direct aqueous injection. J Anal Methods Chem 2019:1–10

    Google Scholar 

  176. Rengaraju B, Ponnuswamy R, Lakshminarayanan V (2014) Investigation of Candida parapsilosis BKR1 for the production of xylose reductase enzyme and its kinetics parameter appraisal. Int J Chemtech Res 6(11):4803–4806

    Google Scholar 

  177. Reshamwala SMS, Lali AM (2020) Exploiting the NADPH pool for xylitol production using recombinant Saccharomyces cerevisiae. Biotechnol Prog 36(3):e2972

    CAS  PubMed  Google Scholar 

  178. Ronzon YC, Zaldo MZ, Lozano MLC, Uscanga MGA (2012) Preliminary characterization of xylose reductase partially purified by reversed micelles from Candida tropicalis IEC5-ITV, an indigenous xylitol-producing strain. Adv Chem Eng Sci 2(1):9–14

    Google Scholar 

  179. Rosa SMA, Felipe MGA, Silva SS, Vitolo M (1998) Xylose reductase production by Candida guilliermondii. Appl Biochem Biotechnol 70(72):127–135

    Google Scholar 

  180. Saha BC, Bothast RJ (1999) Production of xylitol by Candida peltata. J Ind Microbiol Biotechnol 22(6):633–636

    CAS  PubMed  Google Scholar 

  181. Saha BC, Kennedy GJ (2020) Production of xylitol from mixed sugars of xylose and arabinose without co-producing arabitol. Biocatal Agric Biotechnol 29:1–7

    Google Scholar 

  182. Sampaio FC, Silveira WB, Alves VMC, Passos FML, Coelho JLC (2003) Screening of filamentous fungi for production of xylitol from d-xylose. Braz J Microbiol 34(4):325–328

    Google Scholar 

  183. Sampaio FC, Faria JT, Coimbra JS, Passos FMP, Converti A, Minin LA (2009) Xylose reductase activity in Debaryomyces hansenii UFV-170 cultivated in semi-synthetic medium and cotton husk hemicelluloses hydrolysate. Bioprocess Biosyst Eng 32(6):747–754

    CAS  PubMed  Google Scholar 

  184. Santos JC, Mussatto SI, Cunha MAA, Silva SS (2005) Variables that affect xylitol production from sugarcane baggase hydrolysate in a zeolite fluidized bed reactor. Biotechnol Prog 21(6):1639–1643

    CAS  PubMed  Google Scholar 

  185. Sasaki M, Jojima T, Inui M, Yukawa H (2010) Xylitol production by recombinant Corynebacterium glutamicum under oxygen deprivation. Appl Microbiol Biotechnol 86(4):1057–1066

    CAS  PubMed  Google Scholar 

  186. Sato TK, Liu TJ, Parreiras LS, Williams DL, Wohlbach DJ, Bice BD, Ong IM, Breuer RJ, Qin L, Busalacchi D, Deshpande S, Daum C, Gasch AP, Hodge DB (2014) Harnessing genetic diversity for fermentation of xylose in hydrolysates of alkaline hydrogen peroxide pretreated biomass. Appl Environ Microb 80(2):540–554

    Google Scholar 

  187. Scheie AA, Fejerskov O, Danielsen B (1998) The effects of xylitol containing chewing gums on dental plaque and acidogenic potential. J Dent Res 77:1547–1552

    CAS  PubMed  Google Scholar 

  188. Seelbach K, Kragl U (1997) Nanofiltration membranes for cofactor retention in continuous enzymatic synthesis. Enzyme Microb Technol 20(5):389–392

    CAS  Google Scholar 

  189. Sene L, Vitolo M, Felipe MGA, Silva SS (2000) Effects of environmental conditions on xylose reductase and xylitol dehydrogenase production by Candida guilliermondii. Appl Biochem Biotechnol 84(1):371–380

    PubMed  Google Scholar 

  190. Sene L, Felipe MGA, Silva SS, Vitolo M (2001) Preliminary kinetic characterization of xylose reductase and xylitol dehydrogenase extracted from Candida guilliermondii FTI20037 cultivated in sugarcane baggase hydrolysate for xylitol production. Appl Biochem Biotechnol 91(1–9):671–680

    PubMed  Google Scholar 

  191. Seo JH, Park YC (2014) Method for producing ethanol from xylose. US Patent No. 8,628,944

  192. Shao Q, Chundawat SPS, Krishnan C, Bals B, Sousa LD, Thelen KD, Dale BE, Bale V (2010) Enzymatic digestibility and ethanol fermentability of AFEX-treated starch rich lignocellulosics such as corn silage and whole corn plant. Biotechnol Biofuel 3(12):1–10

    Google Scholar 

  193. Silva DDV, Felipe MDGA, Mancilha IM, Silva SS (2005) Evaluation of inoculum of Candida guilliermondii grown in presence of glucose on xylose reductase and xylitol dehydrogenase activities and xylitol production during batch fermentation of sugarcane bagasse hydrolysate. Appl Microbiol Biotechnol 121–124:427–437

    Google Scholar 

  194. Silva DDV, Felipe MGA (2006) Effect of glucose:xylose ratio on xylose reductase and xylitol dehydrogenase activities from Candida guilliermondii in sugarcane bagasse hydrolysate. J Chem Technol Biotechnol 81(7):1294–1300

    Google Scholar 

  195. Singh RS, Singh B, Puri M (2005) An improved process for inulinase production. Indian Patent No. 265023

  196. Singh RS, Sooch BS, Puri M (2007) Optimization of medium and process parameters for the production of inulinase from a newly isolated Kluyveromyces marxianus YS-1. Bioresour Technol 98(13):2518–2525

    CAS  PubMed  Google Scholar 

  197. Singh LK, Chaudhary G, Majumder CB, Ghosh S (2011) Utilization of hemicellulosic fraction of lignocellulosic biomaterial for bioethanol production. Adv Appl Sci Res 2(5):508–521

    CAS  Google Scholar 

  198. Sirisansaneeyakul S, Staniszewski M, Rizzi M (1995) Screening of yeasts for production of xylitol from d-xylose. J Ferment Bioeng 80(6):565–570

    CAS  Google Scholar 

  199. Skoog K, Hagerdal BH (1990) Effect of oxygenation on xylose fermentation by Pichia stipitis. Appl Environ Microbiol 56(11):3389–3394

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Son HF, Lee SM, Kim KJ (2018) Structural insight into d-xylose utilization by xylose reductase from Scheffersomyces stipitis. Sci Rep 8:17442

    PubMed  PubMed Central  Google Scholar 

  201. Sooch BS, Kauldhar BS, Puri M (2014) Recent insights into microbial catalases: isolation, production and purification. Biotechnol Adv 32(8):1429–1447

    CAS  PubMed  Google Scholar 

  202. Sooch BS, Kauldhar BS, Puri M (2016) Isolation and polyphasic characterization of a novel hyper catalase producing thermophilic bacterium for the degradation of hydrogen peroxide. Bioprocess Biosyst Eng 39(11):1759–1773

    CAS  PubMed  Google Scholar 

  203. Sooch BS, Lugani Y (2017) Microbial biodiversity: types, utility and conservation. In: Chauhan A, Bharti PK (eds) Forest and biodiversity conservation. Discovery Publishing House Pvt Ltd., New Delhi, pp 131–166

    Google Scholar 

  204. Strasser AWM, Hollenberg CP, Wantrup MC, Kotter P, Amore R, Piontek M, Hagedorn J (1998) DNA sequence comprising a structural gene coding for xylose reductase or xylose reductase and xylitol dehydrogenase. European Patent No. 0,450,430

  205. Su Y, Li W, Zhu W, Yu R, Fei B, Wen T, Cao Y, Qiao D (2010) Characterization of xylose reductase from Candida tropicalis immobilized on chitosan bead. Afr J Biotechnol 9(31):4954–4965

    CAS  Google Scholar 

  206. Sugai JK, Delgenes JP (1995) Catabolite repression of induction of aldose reductase activity and utilization of mixed hemicellulosic sugars in Candida guilliermondii. Curr Microbiol 31(4):239–244

    CAS  PubMed  Google Scholar 

  207. Suzuki T, Onishi H (1973) Oxidation and reduction of d-xylose by cell free extract of Pichia quercuum. Appl Microbiol 25(5):850–852

    CAS  PubMed  PubMed Central  Google Scholar 

  208. Tamakawa H, Ikushima S, Yoshida S (2013) Construction of a Candida utilis strain with ratio-optimized expression of xylose-metabolizing enzyme genes by cocktail multicopy integration method. J Biosci Bioeng 115(5):532–539

    CAS  PubMed  Google Scholar 

  209. Tamburini E, Bianchini E, Bruni A, Forlani G (2010) Cosubstrate effect on xylose reductase and xylitol dehydrogenase activity levels and its consequence on xylitol production by Candida tropicalis. Enzyme Microb Technol 46(5):352–359

    CAS  Google Scholar 

  210. Tomoeda M, Horitsu H (1964) Pentose metabolism by Candida utilis. Part I. Xylose isomerase. Agric Biol Chem 28(3):139–143

    CAS  Google Scholar 

  211. Tomotani EJ, Arruda PVD, Vitolo M, Felipe MGA (2009) Obtaining partial purified xylose reductase from Candida guilliermondii. Braz J Microbiol 40(3):631–635

    CAS  PubMed  PubMed Central  Google Scholar 

  212. Uppugundla N, Sousa LD, Chundawat SPS, Yu XR, Simmons B, Singh S, Gao XD, Kumar R, Wyman CE, Dale BE, Balan V (2014) A comparative study of ethanol production using dilute acid, ionic liquid and AFEX pretreated corn stover. Biotechnol Biofuel 7(72):1–14

    Google Scholar 

  213. VanCauwenberge JE, Bolen PL, McCracken DA, Bothast RJ (1989) Effect of growth conditions on cofactor-linked xylose reductase activity in Pachysolen tannophilus. Enzyme Microb Technol 11(10):662–667

    CAS  Google Scholar 

  214. Veras HCT, Parachin NS, Almeida JRM (2017) Comparative assessment of fermentative capacity of different xylose-consuming yeasts. Microb Cell Fact 16(1):1–8

    Google Scholar 

  215. Verduyn C, Kleef RV, Frank J, Schreuder H, Dijken JPV, Scheffers WA (1985) Properties of the NAD(P)H-dependent xylose reductase from the xylose fermenting yeast Pichia stipitis. Biochem J 226(3):669–677

    CAS  PubMed  PubMed Central  Google Scholar 

  216. Verduyn C, Jzn JF, Dijken JPV, Scheffers WA (1985) Multiple forms of xylose reductase in Pachysolen tannophilus CBS4044. FEMS Microbiol Lett 30(3):313–317

    CAS  Google Scholar 

  217. Vogl M, Kratzer R, Nidetzky B, Brecker L (2011) Candida tenuis xylose reductase catalysed reduction of acetophenones: the effect of ring-substituents on catalytic efficiency. Org Biomol Chem 9(16):5863–5870

    CAS  PubMed  Google Scholar 

  218. Vogl M, Brecker L (2013) Substrate binding to Candida tenuis xylose reductase during catalysis. RCS Adv 3(48):25997–26004

    CAS  Google Scholar 

  219. Vongsuvanlert V, Tani Y (1988) Purification and characterization of xylose isomerase of a methanol yeast, Candida boidinii, which is involved in sorbitol production from glucose. Agric Biol Chem 52(7):1817–1824

    CAS  Google Scholar 

  220. Wahlborn F, Sonderegger M, Sauer UE (2007) Metabolic engineering for improved xylose utilization of Saccharomyces cerevisiae. US Patent No. 7,253,001

  221. Wahlborn F, Hagerdal BH, Jonsson L (2008) Saccharomyces cerevisiae mutants. US Patent No. 7,381,551

  222. Wang TH, Zhong YH, Huang W, Liu T, You YW (2005) Antisense inhibition of xylitol dehydrogenase gene, xdh1 from Trichoderma reesei. Lett Appl Microbiol 40(6):424–429

    CAS  PubMed  Google Scholar 

  223. Wilson DK, Kavanagh KL, Klimacek M, Nidetzky B (2003) The xylose reductase (AKR2B5) structure: homology and divergence from other aldo-keto reductases and opportunities for protein engineering. Chem Biol Interact 143–144:515–521

    PubMed  Google Scholar 

  224. Winkelhausen E, Kuzmanova S (1998) Microbial conversion of d-xylose to xylitol. J Ferment Bioeng 86(1):1–14

    CAS  Google Scholar 

  225. Witteveen CFB, Busink R, Vondervoort PV, Dijkema C, Swart K, Visser J (1989) L-arabinose and D-xylose catabolism in Aspergillus niger. J Gen Microbiol 135:2163–2171

    CAS  Google Scholar 

  226. Wong CH, Drueckhammer DG, Sweers HM (1985) Enzymatic vs. fermentative synthesis: thermostable glucose dehydrogenase catalyzed regeneration of NAD(P)H for use in enzymatic synthesis. J Am Chem Soc 107(13):4028–4031

    CAS  Google Scholar 

  227. Woodyer R, Simurdiak M, Donk WA, Zhao H (2005) Heterologous expression, purification and characterization of a highly active xylose reductase from Neurospora crassa. Appl Environ Microbiol 71(3):1642–1647

    CAS  PubMed  PubMed Central  Google Scholar 

  228. Xu P, Bura R, Doty SL (2011) Genetic analysis of d-xylose metabolism by endophytic yeast strains of Rhodotorula graminis and Rhodotoruala mucilaginosa. Genet Mol Biol 34(3):471–478

    CAS  PubMed  PubMed Central  Google Scholar 

  229. Yablochkova EN, Bolotnikova OI, Mikhailova NP, Nemova NN, Ginak AI (2003) The activity of xylose reductase and xylitol dehydrogenase in yeasts. Microbiology 72(4):466–469

    Google Scholar 

  230. Yang BX, Xie CY, Xia ZY, Wu YJ, Li B, Tang YQ (2020) The effect of xylose reductase genes on xylitol production by industrial Saccharomyces cerevisiae in fermentation of glucose and xylose. Process Biochem 95:122–130

    CAS  Google Scholar 

  231. Yin SY, Kim HJ, Kim HJ (2014) Protective effect of dietary xylitol on influenza: a virus infection. PLoS ONE 9(1):1–7

    Google Scholar 

  232. Yokoyama S, Suzuki T, Kawai K, Horitsu H, Takamizawa K (1995) Purification, characterization and structure analysis of NADPH-dependent d-xylose reductases from Candida tropicalis. J Ferment Bioeng 79(3):217–223

    CAS  Google Scholar 

  233. Yoshitake J, Ohiwa H, Shimamura M, Imai T (1971) Production of polyalcohol by a Corynebacterium sp. Part I. Production of pentitol from aldopentose. Agric Biol Chem 35(6):905–911

    CAS  Google Scholar 

  234. Yoshitake J, Ohiwa H, Shimamura M, Imai T (1973) Xylitol production by a Corynebacterium species. Agric Biol Chem 37(10):2251–2259

    CAS  Google Scholar 

  235. Yoshitake J, Ishizaki H, Shimamura M, Imai T (1976) Xylitol production by an Enterobacter species. Agric Biol Chem 37(10):2261–2266

    Google Scholar 

  236. Zeid AAA, Fouly MZ, Zawahry YA, Mongy TM, Aziz ABA (2008) Bioconversion of rice straw xylose to xylitol by a local strain of Candida tropicalis. J Appl Sci Res 4(8):975–986

    CAS  Google Scholar 

  237. Zhang F, Qiao D, Xu H, Liao C, Li S, Cao Y (2009) Cloning, expression and characterization of xylose reductase with higher activity from Candida tropicalis. J Microbiol 47(3):351–357

    CAS  PubMed  Google Scholar 

  238. Zhang Y, Gao F, Zhang SP, Su ZG, Ma GH, Wang P (2011) Simultaneous production of 1,3-dihydroxyacetone and xylitol from glycerol and xylose using a nanoparticle-supported multienzyme system with in situ cofactor regeneration. Bioresour Technol 102(2):1837–1843

    CAS  PubMed  Google Scholar 

  239. Zhang J, Geng A, Yao C, Lu Y, Li Q (2012) Effects of lignin-derived phenolic compounds on xylitol production and key enzyme activities by a xylose utilizing yeast Candida athensensis SB18. Bioresour Technol 121:369–378

    CAS  PubMed  Google Scholar 

  240. Zhang C, Zong H, Zhuge B, Lu X, Fang H, Zhuge J (2015) Production of xylitol from d-xylose by overexpression by xylose reductase in osmotolerant yeast Candida glycerinogenes WL2002-5. Appl Biochem Biotechnol 176(5):1511–1527

    CAS  PubMed  Google Scholar 

  241. Zhang M, Jiang ST, Zheng Z, Li XJ, Luo SZ, Wu XF (2015) Cloning, expression and characterization of a novel xylose reductase from Rhizopus oryzae. J Basic Microbiol 55(7):907–921

    CAS  PubMed  Google Scholar 

  242. Zhang B, Zhang J, Wang D, Gao X, Sun L, Hong J (2015) Data for rapid ethanol production at elevated temperatures by engineered thermotolerant Kluyveromyces marxianus via the NADP(H)-preferring xylose reductase-xylitol dehydrogenase pathway. Data Brief 5:179–186

    PubMed  PubMed Central  Google Scholar 

  243. Zhang GC, Turner TL, Jin YS (2017) Enhanced xylose fermentation by engineered yeast expressing NADH oxidase through high cell density inoculums. J Ind Microbiol Biotechnol 44(3):387–395

    CAS  PubMed  Google Scholar 

  244. Zhang M, Puri AK, Wang Z, Singh S, Permaul K (2019) A unique xylose reductase from Thermomyces lanuginosus: effect of lignocellulosic substrates and inhibitors and applicability in lignocellulosic bioconversion. Bioresour Technol 281:374–381

    CAS  PubMed  Google Scholar 

  245. Zhao X, Gao P, Wang Z (1998) The production and properties of a new xylose reductase from fungus Neurospora crassa. Appl Biochem Biotechnol 70–72(1):405–414

    PubMed  Google Scholar 

  246. Zhao H, Woodyer R, Simurdiak M, van der Donk WA (2008) Highly active xylose reductase from Neurospora crassa. US Patent No. 7,381,553

  247. Zhao H, Woodyer R, Simurdiak M, Donk WA (2009) Highly active xylose reductase from Neurospora crassa. US Patent No. 7,592,163

  248. Zhao J, Xia LM (2010) Bioconversion of corn stover hydrolysate to ethanol by a recombinant yeast strain. Fuel Process Technol 91(12):1807–1811

    CAS  Google Scholar 

  249. Zhao H, Nair NU (2014) Xylose reductase mutants and uses thereof. US Patent No. 8,822,661.

  250. Zhao H, Nair NU (2015) Xylose reductase mutants and uses thereof. European Patent No. 2,164,876

  251. Zheng Y, Yu X, Li T, Xiong X, Chen S (2014) Induction of D-xylose uptake and expression of NAD(P)H-linked xylose reductase and NADP+-linked xylitol dehydrogenase in the oleaginous microalga Chlorella sorokiniana. Biotechnol Biofuels 7(1):1–8

    Google Scholar 

  252. Zongli L, Hendrik Jurgens JVV, Allan George D, Andrew Taplin F (2020) Xylitol producing Metschnikowia species. Unites States Patent No. 1,043,5721

Download references

Acknowledgements

The authors are thankful to University Grants Commission, New Delhi for financial support in the form of Major Research Project on Xylitol. The authors are also thankful to Department of Biotechnology and Bhai Kahn Singh Nabha Library, Punjabi University, Patiala, for providing necessary facilities and access to technical and scientific literature.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Balwinder Singh Sooch.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest in the present publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lugani, Y., Puri, M. & Sooch, B.S. Recent insights, applications and prospects of xylose reductase: a futuristic enzyme for xylitol production. Eur Food Res Technol 247, 921–946 (2021). https://doi.org/10.1007/s00217-020-03674-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-020-03674-x

Keywords