Skip to main content

Advertisement

Log in

Acylglycerol synthesis including EPA and DHA from rainbow trout (Oncorhynchus mykiss) belly flap oil and caprylic acid catalyzed by Thermomyces lanuginosus lipase under supercritical carbon dioxide

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Supercritical carbon dioxide (SCCO2) was studied as a medium for the esterification of eicosapentaenoic acid (n-3 C20:5, EPA) or docosahexaenoic acid (n-3 C22:6, DHA) and caprylic acid (C8:0, CA) in structured triacylglycerols (sTAG) using Thermomyces lanuginosus lipase as biocatalyst. Process variables (n-3 long-chain polyunsaturated fatty acid: CA, n-3 LCPUFA:CA content ratio), glycerol content (wt. %), and supercritical time, temperature and pressure were optimized by the Response Surface Methodology through a central composite design of 25–1 + star. Synthesis of sTAG with EPA, DHA and CA under SCCO2 was significantly affected by the n-3 LCPUFA:CA content ratio and supercritical time. MALDI-TOF mass spectrometry revealed that acylglycerols with the highest levels of EPA or DHA content in the sn-2 position were obtained when the following variables conditions were applied: 50% (n-3 LCPUFA:CA content ratio), 40 °C (supercritical temperature), 20 MPa (supercritical pressure), 4 h (supercritical time) and 20.0 wt. % (glycerol concentration). For such experimental conditions, esterification catalyzed by Thermomyces lanuginosus lipase under supercritical carbon dioxide allowed obtaining sTAG synthesized with 54.95% of CA, 11.64% of EPA and 13.77% of DHA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Food and Agriculture Organization of the United Nations (FAO) (2010) Fats and fatty acids in human nutrition: report of an expert consultation. FAO Food Nutr 91:1–166

    Google Scholar 

  2. Dyerberg J, Madsen P, Møller JM, Aardestrup I, Schmidt EB (2010) Bioavailability of marine n-3 fatty acid formulations. Prost Leukot Essent Fatty Acids 83:137–141

    Article  CAS  Google Scholar 

  3. Calvo MJ, Martínez MS, Torres W, Chávez-Castillo M, Luzardo E, Villasmil N, Salazar J, Velasco M, Bermúdez V (2017) Omega-3 polyunsaturated fatty acids and cardiovascular health: a molecular view into structure and function. Vessel Plus 1:116–128

    CAS  Google Scholar 

  4. Greene DH, Selivonchick DP (1987) Lipid metabolism in fish. Prog Lipid Res 26:53–85

    Article  CAS  PubMed  Google Scholar 

  5. Haliloǧlu H, Bayır A, Sirkecioǧlu N, Aras M, Atamanalp M (2004) Comparison of fatty acid composition in some tissues of rainbow trout (Oncorhynchus mykiss) living in seawater and freshwater. Food Chem 86:55–59

    Article  CAS  Google Scholar 

  6. Kolakowska A, Domiszewski Z, Kozlowski D, Gajowniczek M (2006) Effects of rainbow trout freshness on n-3 polyunsaturated fatty acids in fish offal. Eur J Lipid Sci Technol 108:723–729

    Article  CAS  Google Scholar 

  7. Sone I, Nortvedt R (2009) A consumer preference study of raw Norwegian rainbow trout (Oncorhynchus mykiss) as sashimi with focus on young adults in Japan. Int J Food Sci Technol 44:2055–2061

    Article  CAS  Google Scholar 

  8. Pando ME, Rodríguez A, Galdames A, Berríos M, Rivera M, Romero N, Valenzuela MA, Ortiz J, Aubourg SP (2018) Maximization of the docosahexaenoic and eicosapentaenoic acids content in concentrates obtained from a by-product of rainbow trout (Oncorhynchus mykiss) processing. Eur Food Res Technol 244:937–948

    Article  CAS  Google Scholar 

  9. Rubio-Rodríguez N, Beltrán S, Jaime I, de Diego M, S, Sanz MT, Rovira J, (2010) Production of omega-3 polyunsaturated fatty acid concentrates: a review. Innov Food Sci Emerg Tech 11:1–12

    Article  CAS  Google Scholar 

  10. Shahidi F, Wanasundara UN (1998) Omega-3 fatty acid concentrates: nutritional aspects and production technologies. Trends Food Sci Technol 9:230–240

    Article  CAS  Google Scholar 

  11. Chandler IC (2001) Determining the region selectivity of immobilized lipases in triacylglycerol acidolysis reactions. J Am Oil Chem Soc 78:737–742

    Article  CAS  Google Scholar 

  12. Du W, Xu YY, Liu DH, Li ZB (2005) Study on acyl migration in immobilized lipozyme TL-catalyzed transesterification of soybean oil for biodiesel production. J Mol Catal : Enzym 37:68–71

    Article  CAS  Google Scholar 

  13. Zhang H (2007) Evaluation of Practical Process Aspects for Lipozyme TL IM Catalyzed Bulk Fat Modification in a Batch Reactor. Open Biotechnol J 1:72–80

    Article  CAS  Google Scholar 

  14. Fernandez-Lafuente R (2010) Lipase from Thermomyces lanuginosus: Uses and prospects as an industrial biocatalyst. J Mol Catal B: Enzym 62:197–212

    Article  CAS  Google Scholar 

  15. Svensson J, Adlercreutz P (2011) Effect of acyl migration in Lipozyme TL IM-catalyzed interesterification using a triacylglycerol model system. Eur J Lipid Sci Technol 113:1258–1265

    Article  CAS  Google Scholar 

  16. Gunnlaugsdóttir H, Sivik B (1997) Lipase-catalyzed alcoholysis with supercritical carbon dioxide extraction 1: Influence of flow rate. J Am Oil Chem Soc 74:1483–1490

    Article  Google Scholar 

  17. Lin TJ, Chen SW, Chang AC (2006) Enrichment of n-3 PUFA contents on triglycerides of fish oil by lipase-catalyzed trans-esterification under supercritical conditions. Biochem Eng J 29:27–34

    Article  CAS  Google Scholar 

  18. Nagesha GK, Manohar B, Udaya K (2004) Enzymatic esterification of free fatty acids of hydrolyzed soy deodorizer distillate in supercritical carbon dioxide. J Supercrit Fluid 32:137–145

    Article  CAS  Google Scholar 

  19. Zuta CP, Simpson BK, Chan HM, Phillips L (2003) Concentrating PUFA from Mackerel processing waste. J Am Oil Chem Soc 80:933–936

    Article  CAS  Google Scholar 

  20. Linder M, Fanni J, Parmentier M (2005) Proteolytic extraction of salmon oil and PUFA concentration by lipases. Mar Biotechnol 7:70–76

    Article  CAS  Google Scholar 

  21. Pando ME, Bravo B, Berríos M, Galdames A, Rojas C, Romero N, Camilo C, Encina C, Rivera M, Rodríguez A, Aubourg SP (2014) Concentrating n-3 fatty acids from crude and refined commercial salmon oil. Czech J Food Sci 32:169–176

    Article  CAS  Google Scholar 

  22. Berríos MM, Rodríguez A, Rivera M, Pando ME, Valenzuela MA, Aubourg SP (2017) Optimisation of rancidity stability in long-chain PUFA concentrates obtained from a rainbow trout (Oncorhynchus mykiss) by-product. Int J Food Sci Technol 52:1463–1472

    Article  CAS  Google Scholar 

  23. Dovale-Rosabal G, Rodríguez A, Contreras E, Ortiz-Viedma J, Muñoz M, Trigo M, Aubourg SP, Espinosa A (2019) Concentration of EPA and DHA from refined salmon oil by optimizing the urea-fatty acid adduction reaction conditions using response surface methodology. Molecules 24:1642

    Article  CAS  PubMed Central  Google Scholar 

  24. Hita E, Robles A, Camacho B, Ramírez AA, Esteban L, Jiménez MJ, Muñío MD, González PA, Molina E (2007) Production of structured triacylglycerols (STAG) rich in docosahexaenoic acid (DHA) in position 2 by acidolysis of tuna oil catalyzed by lipases. Process Biochem 42:415–422

    Article  CAS  Google Scholar 

  25. Jiménez M, Esteban L, Robles A, Hita E, González PA, Muñío MM, Molina E (2010) Production of triacylglycerols rich in palmitic acid at position 2 as intermediates for the synthesis of human milk fat substitutes by enzymatic acidolysis. Process Biochem 45:407–414

    Article  CAS  Google Scholar 

  26. Myers R, Montgomery D, Anderson-Cook C (1995) Response surface methodology: process and product optimization using designed experiments, chap. 1. Wiley, New York, pp 1–11

    Google Scholar 

  27. Strohalm M, Hassman M, Kosata B, Kodicek M (2008) mMass data miner: an open source alternative for mass spectrometric data analysis. Rapid Commun Mass Spectrom 22:905–908

    Article  PubMed  CAS  Google Scholar 

  28. Strohalm M, Kavan D, Novak P, Volny M, Havlicek V (2010) mMass 3: a cross-platform software environment for precise analysis of mass spectrometric data. Anal Chem 82:4648–4651

    Article  CAS  PubMed  Google Scholar 

  29. Niedermeyer THJ, Strohalm M (2012) mMass as a software tool for the annotation of cyclic peptide tandem mass spectra. PLoS ONE 7:e44913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fahy E, Sud M, Cotter D, Subramaniam S (2007) LIPID MAPS online tools for lipid research. Nucleic Acids Res 35(Web Server issue):W606–W612

    Article  PubMed  PubMed Central  Google Scholar 

  31. Cormier PJ, Clarke RM, McFadden RM, Ghandi K (2014) Selective free radical reactions using supercritical carbon dioxide. J Am Oil Chem Soc 136:2200–2203

    Article  CAS  Google Scholar 

  32. Ratnayake WMN, Galli C (2009) Fat and fatty acid terminology, methods of analysis and fat digestion and metabolism: a background review paper. Ann Nutr Metab 55:8–43

    Article  CAS  PubMed  Google Scholar 

  33. Liu S, Zhang C, Hong P, Ji H (2007) Lipase-catalysed acylglycerol synthesis of glycerol and n-3 PUFA from tuna oil: Optimization of process parameters. Food Chem 103:1009–1015

    Article  CAS  Google Scholar 

  34. Robles MA, Esteban CL, Giménez GA, Camacho PB, Ibáñez GMJ, Molina GE (1999) Lipase-catalyzed esterification of glycerol and polyunsaturated fatty acids from fish and microalgae oils. Prog Ind Microbiol 70:379–391

    Article  Google Scholar 

  35. Noriega-Rodriguez JA, Carrillo-Pérez E, Gámez-Meza N, Medina- Juárez LA, Baeza- Jiménez R, García HS (2013) Optimization of the lipase catalyzed production of structured acylglycerols with polyunsaturated fatty acids isolated from sardine oil. J Food Res 2:97–105

    Article  CAS  Google Scholar 

  36. Imanparast S, Hamedi J, Faramarzi MA (2018) Enzymatic esterification of acylglycerols rich in omega-3 from flaxseed oil by an immobilized solvent-tolerant lipase from Actinomadura sediminis UTMC 2870 isolated from oil-contaminated soil. Food Chem 245:934–942

    Article  CAS  PubMed  Google Scholar 

  37. Calvano CD, Palmisano F, Zambonin CG (2005) Laser desorption/ionization time-of-flight mass spectrometry of triacylglycerols in oils. Rapid Commun Mass Spectrom 19:1315–1320

    Article  CAS  PubMed  Google Scholar 

  38. Lay JO Jr, Liyanage R, Durham B, Brooks J (2006) Rapid characterization of edible oils by direct matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis using triacylglycerols Rapid Commun. Mass Spectrom 20:952–958

    CAS  Google Scholar 

  39. Kaufman M, Wiesman Z (2007) Pomegranate oil analysis with emphasis on MALDI-TOF/MS triacylglycerol fingerprinting. J Agric Food Chem 55:10405–10413

    Article  CAS  PubMed  Google Scholar 

  40. Shinn SE, Liyanage R, Lay JO, Proctor A (2015) Using MALDI MS for rapid analysis of food lipids. Lipid Technol 27:255–257

    Article  CAS  Google Scholar 

  41. Ng TT, Li S, Ng CCA, So PK, Wong TF, Li ZY, Chan ST, Yao ZP (2018) Establishment of a spectral database for classification of edible oils using matrix-assisted laser desorption/ionization mass spectrometry. Food Chem 252:335–342

    Article  CAS  PubMed  Google Scholar 

  42. Picariello G, Paduano A, Sacchi R, Addeo F (2009) M ALDI-TOF mass spectrometry profiling of polar and nonpolar fractions in heated vegetable oils. J Agric Food Chem 57:5391–5400

    Article  CAS  PubMed  Google Scholar 

  43. Calvano CD, Ceglie CD, D’Accolti L, Zambonin CG (2012) MALDI-TOF mass spectrometry detection of extra-virgin olive oil adulteration with hazelnut oil by analysis of phospholipids using an ionic liquid as matrix and extraction solvent. Food Chem 134:1192–1198

    Article  CAS  PubMed  Google Scholar 

  44. Di Girolamo F, Masotti A, Lante I, Scapaticci M, Calvano CD, Zambonin C, Muraca M, Putignani L (2015) A simple and effective mass spectrometric approach to identify the adulteration of the Mediterranean diet component extra-virgin olive oil with corn oil. Int J Mol Sci 16:20896–20912

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Guyon F, Absalon Ch, Eloy A, Salagoity MH, Esclapez M, Medina B (2003) Comparative study of matrix-assisted laser desorption/ionization and gas chromatography for quantitative determination of cocoa butter and cocoa butter equivalent triacylglycerol composition. Rapid Commun Mass Spectrom 17:2317–2322

    Article  CAS  PubMed  Google Scholar 

  46. Schiller J, Arnhold J, Benard S, Müller M, Reichl S, Arnold K (1999) Lipid analysis by matrix-assisted laser desorption and ionization mass spectrometry: a methodological approach. Anal Biochem 267:46–56

    Article  CAS  PubMed  Google Scholar 

  47. Yener S, van Valenberg HJF (2019) Characterisation of triacylglycerols from bovine milk fat fractions with MALDI-TOF-MS fragmentation. Talanta 204:533–541

    Article  CAS  PubMed  Google Scholar 

  48. Badu M, Awudza AMJ (2017) Determination of the triacylglycerol content for the identification and assessment of purity of Shea butter fat, peanut oil, and palm kernel oil using MALDI-TOF/TOF mass spectroscopic technique. Int J Food Prop 20:271–280

    Article  CAS  Google Scholar 

  49. Astigarraga E, Barreda-Gómez G, Lombardero L, Fresnedo O, Castaño F, Giralt MT, Ochoa B, Rodríguez-Puertas R, Fernández JA (2008) Profiling and imaging of lipids on brain and liver tissue by matrix-assisted laser desorption/ ionization mass spectrometry using 2-mercaptobenzothiazole as a matrix. Anal Chem 80:9105–9114

    Article  CAS  PubMed  Google Scholar 

  50. Satué MT, López MC (1996) Sex-linked differences in fatty acid composition of rainbow trout (Oncorhynchus mykiss) liver oil. Food Chem 57:359–363

    Article  Google Scholar 

  51. Ruiz-Lopez N, Stubhaug I, Ipharraguerre I, Rimbach G, Menoyo D (2015) Positional distribution of fatty acids in triacylglycerols and phospholipids from fillets of Atlantic salmon (Salmo salar) fed vegetable and fish oil blends. Mar Drugs 13:4255–4269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Tsoupras A, Lordan R, Demuru M, Shiels K, Saha SK, Nasopoulou C, Zabetakis I (2018) Structural elucidation of Irish organic farmed salmon (Salmo salar) polar lipids with antithrombotic activities. Mar Drugs 16:176

    Article  PubMed Central  CAS  Google Scholar 

  53. Zhang H, Zhao H, Zhang Y, Shen Y, Su H, Jin J, Jin Q, Wang X (2018) Characterization of positional distribution of fatty acids and triacylglycerol molecular compositions of marine fish oils rich in omega-3 polyunsaturated fatty acids. Biomed Res Int 2018:3529682

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Comisión Nacional de Investigación Científica y Tecnológica, FONDECYT program (Government of Chile) (Grant number 1120627) and the Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: MEP and AR; methodology: MEP, AR, MMB, MR, NR, and AB; formal analysis and investigation: MEP, AR, MMB, MR, and AB; writing—original draft preparation: MEP, AR, MAV, and SPA; writing—review and editing: AR, MAV, and SPA; funding acquisition: AR; resources: AR sand NR; Supervision: AR and MAV.

Corresponding author

Correspondence to Alicia Rodríguez.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Compliance with ethics requirements

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pando, M.E., Rodríguez, A., Valenzuela, M.A. et al. Acylglycerol synthesis including EPA and DHA from rainbow trout (Oncorhynchus mykiss) belly flap oil and caprylic acid catalyzed by Thermomyces lanuginosus lipase under supercritical carbon dioxide. Eur Food Res Technol 247, 499–511 (2021). https://doi.org/10.1007/s00217-020-03643-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-020-03643-4

Keywords

Navigation