Skip to main content
Log in

Impact of maturity stage at harvest on the main physicochemical characteristics, the levels of vitamin C, polyphenols and volatiles and the sensory quality of Gariguette strawberry

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

In this study, quality parameters (color, soluble solids content, titratable acidity), levels of sugars, organic acids, vitamin C, polyphenols and volatiles were determined during two successive years in Gariguette strawberries harvested at two stages of maturity (turning stage and fully ripe). Fruits were analyzed at harvest and after 2 days of storage at 10 °C. The descriptive sensory analyses of the samples were also performed by a trained panel. Whether at harvest or after storage, no significant difference was observed for sugars between samples, but strawberries harvested fully ripe had lower organic acids and higher levels of volatiles. Consistent with these results, strawberries harvested fully ripe were significantly noted sweeter and more aromatic than those harvested 75% red. No significant difference was observed for total vitamin C between samples, but strawberries harvested fully ripe were overall richer in polyphenols, particularly in hydroxycinnamic acids. This suggests strawberries harvested fully ripe could potentially have a greater impact on health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. FAOSTAT (2019) In: Stat. Div. Food Agric. Organ. U. N. https://www.fao.org/faostat/en/#home. Accessed 23 Jan 2019

  2. Sturm K, Koron D, Stampar F (2003) The composition of fruit of different strawberry varieties depending on maturity stage. Food Chem 83:417–422

    Article  CAS  Google Scholar 

  3. Van de Poel B, Vandendriessche T, Hertog ML et al (2014) Detached ripening of non-climacteric strawberry impairs aroma profile and fruit quality. Postharvest Biol Technol 95:70–80

    Article  CAS  Google Scholar 

  4. Kalt W, Prange RK, Lidster PD (1993) Postharvest color development of strawberries: influence of maturity, temperature and light. Can J Plant Sci 73:541–548

    Article  Google Scholar 

  5. Aprile MC, Caputo V, Nayga RM Jr (2016) Consumers’ preferences and attitudes toward local food products. J Food Prod Mark 22:19–42

    Article  Google Scholar 

  6. Kader AA (1999) Fruit maturity, ripening, and quality relationships. Int Symp Eff Pre Postharvest Factors Fruit Storage 485:203–208

    Google Scholar 

  7. Aaby K, Mazur S, Nes A, Skrede G (2012) Phenolic compounds in strawberry (Fragaria x ananassa Duch.) fruits: composition in 27 cultivars and changes during ripening. Food Chem 132:86–97

    Article  CAS  Google Scholar 

  8. Alvarez-Suarez JM, Mazzoni L, Forbes-Hernandez TY et al (2014) The effects of pre-harvest and post-harvest factors on the nutritional quality of strawberry fruits: a review. J Berry Res 4:1–10

    Article  CAS  Google Scholar 

  9. Ayala-Zavala JF, Wang SY, Wang CY, González-Aguilar GA (2004) Effect of storage temperatures on antioxidant capacity and aroma compounds in strawberry fruit. LWT Food Sci Technol 37:687–695

    Article  CAS  Google Scholar 

  10. de Jesús O-P, Yahia EM, Ramírez-Bustamante N et al (2013) Physical attributes and chemical composition of organic strawberry fruit (Fragaria x ananassa Duch, Cv. Albion) at six stages of ripening. Food Chem 138:372–381

    Article  CAS  Google Scholar 

  11. Forney CF, Kalt W, Jordan MA (2000) The composition of strawberry aroma is influenced by cultivar, maturity, and storage. HortScience 35:1022–1026

    Article  CAS  Google Scholar 

  12. Lopes-da-Silva F, de Pascual-Teresa S, Rivas-Gonzalo J, Santos-Buelga C (2002) Identification of anthocyanin pigments in strawberry (cv Camarosa) by LC using DAD and ESI-MS detection. Eur Food Res Technol 214:248–253

    Article  CAS  Google Scholar 

  13. Lopes-da-Silva F, Escribano-Bailón MT, Alonso JJP et al (2007) Anthocyanin pigments in strawberry. LWT Food Sci Technol 40:374–382

    Article  CAS  Google Scholar 

  14. Ménager I, Jost M, Aubert C (2004) Changes in physicochemical characteristics and volatile constituents of strawberry (Cv. Cigaline) during maturation. J Agric Food Chem 52:1248–1254

    Article  CAS  Google Scholar 

  15. Miszczak A, Forney CF, Prange RK (1995) Development of aroma volatiles and color during postharvest ripening of ‘Kent’ strawberries. J Am Soc Hortic Sci 120:650–655

    Article  CAS  Google Scholar 

  16. Nowicka A, Kucharska AZ, Sokół-Łętowska A, Fecka I (2019) Comparison of polyphenol content and antioxidant capacity of strawberry fruit from 90 cultivars of Fragaria× ananassa Duch. Food Chem 270:32–46

    Article  CAS  PubMed  Google Scholar 

  17. Nunes MCN, Brecht JK, Morais AM, Sargent SA (2006) Physicochemical changes during strawberry development in the field compared with those that occur in harvested fruit during storage. J Sci Food Agric 86:180–190

    Article  CAS  Google Scholar 

  18. Olsson ME, Ekvall J, Gustavsson K-E et al (2004) Antioxidants, low molecular weight carbohydrates, and total antioxidant capacity in strawberries (Fragaria × ananassa): effects of cultivar, ripening, and storage. J Agric Food Chem 52:2490–2498

    Article  CAS  PubMed  Google Scholar 

  19. Pineli L de L de O, Moretti CL, dos Santos MS et al (2011) Antioxidants and other chemical and physical characteristics of two strawberry cultivars at different ripeness stages. J Food Compos Anal 24:11–16

    Article  CAS  Google Scholar 

  20. Pyysalo T, Honkanen E, Hirvi T (1979) Volatiles of wild strawberries, Fragaria vesca L., compared to those of cultivated berries, Fragaria x ananassa cv Senga Sengana. J Agric Food Chem 27:19–22

    Article  CAS  Google Scholar 

  21. Seeram NP, Lee R, Scheuller HS, Heber D (2006) Identification of phenolic compounds in strawberries by liquid chromatography electrospray ionization mass spectroscopy. Food Chem 97:1–11

    Article  CAS  Google Scholar 

  22. Shin Y, Ryu J-A, Liu RH et al (2008) Harvest maturity, storage temperature and relative humidity affect fruit quality, antioxidant contents and activity, and inhibition of cell proliferation of strawberry fruit. Postharvest Biol Technol 49:201–209

    Article  CAS  Google Scholar 

  23. Ulrich D, Hoberg E, Rapp A, Kecke S (1997) Analysis of strawberry flavour–discrimination of aroma types by quantification of volatile compounds. Z Für Leb Forsch A 205:218–223

    Article  CAS  Google Scholar 

  24. Watson R, Wright CJ, McBurney T et al (2002) Influence of harvest date and light integral on the development of strawberry flavour compounds. J Exp Bot 53:2121–2129

    Article  CAS  PubMed  Google Scholar 

  25. Yan J, Ban Z, Lu H et al (2018) The aroma volatile repertoire in strawberry fruit: a review. J Sci Food Agric 98:4395–4402

    Article  CAS  PubMed  Google Scholar 

  26. Zhang J, Wang X, Yu O et al (2011) Metabolic profiling of strawberry (Fragaria × ananassa Duch.) during fruit development and maturation. J Exp Bot 62:1103–1118

    Article  CAS  PubMed  Google Scholar 

  27. Miszczak A, Forney CF, Prange RK (1995) Development of aroma volatiles and color during postharvest ripening of `Kent’ strawberries. J Am Soc Hortic Sci 120:650–655

    Article  CAS  Google Scholar 

  28. Nunes MCN, Morais AM, Brecht JK, Sargent SA (2002) Fruit maturity and storage temperature influence response of strawberries to controlled atmospheres. J Am Soc Hortic Sci 127:836–842

    Article  Google Scholar 

  29. Kafkas E, Koşar M, Paydaş S et al (2007) Quality characteristics of strawberry genotypes at different maturation stages. Food Chem 100:1229–1236

    Article  CAS  Google Scholar 

  30. Kosińska A, Diering S, Prim D et al (2013) Phenolic compounds profile of strawberry fruits of Charlotte cultivar. J Berry Res 3:15–23

    Article  CAS  Google Scholar 

  31. Aubert C, Bosc J-P (2014) Postharvest evolution of aromatic and nutritional quality for various strawberry cultivars in France. Acta Hort 1049:789–794

    Article  Google Scholar 

  32. Douillard C, Guichard E (1989) Comparison by multidimensional analysis of concentrations of volatile compounds in fourteen frozen strawberry varieties. Sci Aliments 9:53–75

    CAS  Google Scholar 

  33. Douillard C, Guichard E (1990) The aroma of strawberry (Fragaria ananassa): characterisation of some cultivars and influence of freezing. J Sci Food Agric 50:517–531

    Article  CAS  Google Scholar 

  34. Gaborieau S, Cendrès A, Page D et al (2018) Variability of free and glycosylated volatiles from strawberries destined for the fresh market and for processing, assessed using direct enzymatic hydrolysis. LWT 98:187–196

    Article  CAS  Google Scholar 

  35. Lambert Y, Demazeau G, Largeteau A, Bouvier JM (1999) Changes in aromatic volatile composition of strawberry after high pressure treatment. Food Chem 67:7–16

    Article  CAS  Google Scholar 

  36. Tiwari BK, O’donnell CP, Patras A et al (2009) Effect of ozone processing on anthocyanins and ascorbic acid degradation of strawberry juice. Food Chem 113:1119–1126

    Article  CAS  Google Scholar 

  37. Aubert C, Chalot G (2018) Chemical composition, bioactive compounds, and volatiles of six table grape varieties (Vitis vinifera L.). Food Chem 240:524–533

    Article  CAS  PubMed  Google Scholar 

  38. Francis FJ (1995) Quality as influenced by color. Food Qual Prefer 6:149–155

    Article  Google Scholar 

  39. Lee SK, Kader AA (2000) Preharvest and postharvest factors influencing vitamin C content of horticultural crops. Postharvest Biol Technol 20:207–220

    Article  CAS  Google Scholar 

  40. Fang T, Zhen Q, Liao L et al (2017) Variation of ascorbic acid concentration in fruits of cultivated and wild apples. Food Chem 225:132–137

    Article  CAS  PubMed  Google Scholar 

  41. Forbes-Hernandez TY, Gasparrini M, Afrin S et al (2016) The healthy effects of strawberry polyphenols: which strategy behind antioxidant capacity? Crit Rev Food Sci Nutr 56:S46–S59

    Article  CAS  PubMed  Google Scholar 

  42. Basu A, Nguyen A, Betts NM, Lyons TJ (2014) Strawberry as a functional food: an evidence-based review. Crit Rev Food Sci Nutr 54:790–806

    Article  CAS  PubMed  Google Scholar 

  43. Afrin S, Gasparrini M, Forbes-Hernandez TY et al (2016) Promising health benefits of the strawberry: a focus on clinical studies. J Agric Food Chem 64:4435–4449

    Article  CAS  PubMed  Google Scholar 

  44. Häkkinen S, Heinonen M, Kärenlampi S et al (1999) Screening of selected flavonoids and phenolic acids in 19 berries. Food Res Int 32:345–353

    Article  Google Scholar 

  45. Vattem DA, Lin Y-T, Shetty K (2005) Enrichment of phenolic antioxidants and anti-Helicobacter pylori properties of cranberry pomace by solid-state bioprocessing. Food Biotechnol 19:51–68

    Article  CAS  Google Scholar 

  46. Bakker J, Bridle P, Bellworthy SJ (1994) Strawberry juice colour: a study of the quantitative and qualitative pigment composition of juices from 39 genotypes. J Sci Food Agric 64:31–37

    Article  CAS  Google Scholar 

  47. Wang SY, Zheng W (2001) Effect of plant growth temperature on antioxidant capacity in strawberry. J Agric Food Chem 49:4977–4982

    Article  CAS  PubMed  Google Scholar 

  48. Kaşıkcı MB, Bağdatlıoğlu N (2016) Bioavailability of quercetin. Curr Res Nutr Food Sci J 4:146–151

    Article  Google Scholar 

  49. Murakami A, Ashida H, Terao J (2008) Multitargeted cancer prevention by quercetin. Cancer Lett 269:315–325

    Article  CAS  PubMed  Google Scholar 

  50. Auger C, Al-Awwadi N, Bornet A et al (2004) Catechins and procyanidins in Mediterranean diets. Food Res Int 37:233–245

    Article  CAS  Google Scholar 

  51. Miller PH, Libbey LM, Yang HY (1973) Loganberry flavor components of commercial essence. J Agric Food Chem 21:508–508

    Article  CAS  Google Scholar 

  52. Mateo JJ, Jiménez M (2000) Monoterpenes in grape juice and wines. J Chromatogr A 881:557–567

    Article  CAS  PubMed  Google Scholar 

  53. Schreier P (1984) Chromatographic studies of biogenesis of plant volatiles. Hüthig, Heideberg

    Google Scholar 

  54. Larsen M, Poll L (1992) Odour thresholds of some important aroma compounds in strawberries. Z Für Lebensm Unters Forsch 195:120–123

    Article  CAS  Google Scholar 

  55. Engel KH, Flath RA, Buttery RG et al (1988) Investigation of volatile constituents in nectarines. 1. Analytical and sensory characterization of aroma components in some nectarine cultivars. J Agric Food Chem 36:549–553

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Brigitte Navez for fruitful discussions, Michel Jost for his technical assistance, and Nelly Ottens for her assistance with English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe Aubert.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Compliance with ethics requirements

This article does not contain any studies with human or animal subjects.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aubert, C., Bruaut, M., Chalot, G. et al. Impact of maturity stage at harvest on the main physicochemical characteristics, the levels of vitamin C, polyphenols and volatiles and the sensory quality of Gariguette strawberry. Eur Food Res Technol 247, 37–49 (2021). https://doi.org/10.1007/s00217-020-03605-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-020-03605-w

Keywords

Navigation