Skip to main content
Log in

Effects of addition of buckwheat bran on physicochemical, pasting properties and starch digestion of buckwheat gels

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

This study investigated the effects of different levels of buckwheat bran inclusion onto the physicochemical, pasting properties and in vitro starch digestibility of buckwheat flour gels. Total phenolic content and antioxidant activities (DPPH radical-scavenging activity and ferric reducing/antioxidant power) were also measured. Total starch content per 100 g of gel ranged from 64.45 to 75.66, and the percentage of resistant starch ranged from 1.36% to 1.75%, while protein ranged from 12.07% to 12.93%. The results showed that the amount of bran addition decreased total starch and slightly reduced protein content, but increased resistant starch content. The level of bran addition increased the total phenolic content and antioxidant activity of the gels, while it reduced the blood sugar response. As the bran levels increased, the glucose released decreased (95.17, 84.08, 69.80, 60.23 mg glucose/g sample, respectively). The results showed that the bran of buckwheat (a pseudocereal) has nutritional value and can be used in the development of buckwheat products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Data are available upon request.

References

  1. Zhu F (2016) Buckwheat starch: structures, properties, and applications. Trends Food Sci Technol 49:121–135. https://doi.org/10.1016/j.tifs.2015.12.002

    Article  CAS  Google Scholar 

  2. Liu F, He C, Wang L, Wang M (2018) Effect of milling method on the chemical composition and antioxidant capacity of Tartary buckwheat flour. Int J Food Sci Technol 53:2457–2464. https://doi.org/10.1111/ijfs.13837

    Article  CAS  Google Scholar 

  3. Zhang W, Zhu Y, Liu Q, Bao J, Liu Q (2017) Identification and quantification of polyphenols in hull, bran and endosperm of common buckwheat (Fagopyrum esculentum) seeds. J Funct Foods 38:363–369. https://doi.org/10.1016/j.jff.2017.09.024

    Article  CAS  Google Scholar 

  4. Gélinas P, Gagnon F (2018) Inhibitory activity towards human α-amylase in wheat flour and gluten. Int J Food Sci Technol 53:467–474. https://doi.org/10.1111/ijfs.13605

    Article  CAS  Google Scholar 

  5. I Beitāne G Krūmiņa-Zemture Z Krūma I Cinkmanis (2018) Phenol Content Buckwheat Flour 72 2 75 10.2478/prolas-2018-0012

  6. Dziadek K, Kopeć A, Piątkowska E, Leszczyńska T, Pisulewska E, Witkowicz R, Bystrowska B, Francik R (2018) Identification of polyphenolic compounds and determination of antioxidant activity in extracts and infusions of buckwheat leaves. Z Lebensm Unters Forsch A 244(2):333–343. https://doi.org/10.1007/s00217-017-2959-2

    Article  CAS  Google Scholar 

  7. Wang L, Duan W, Zhou S, Qian H, Zhang H, Qi X (2018) Effect of rice bran fibre on the quality of rice pasta. Int J Food Sci Technol 53:81–87. https://doi.org/10.1111/ijfs.13556

    Article  CAS  Google Scholar 

  8. Atalay MH, Bilgiçli N, Elgün A, Demir MK (2013) Effects of buckwheat (Fagopyrum esculentum Muench) milling products, transglutaminase and sodium stearoyl-2-lactylate on bread properties. J Food Process Preserv 37(1):1–9. https://doi.org/10.1111/j.1745-4549.2011.00607.x

    Article  CAS  Google Scholar 

  9. Wijngaard HH, Arendt EK (2006) Buckwheat. Cereal Chem 83(4):391–401

    Article  CAS  Google Scholar 

  10. Cho YJ, Bae IY, Inglett GE, Lee S (2014) Utilization of tartary buckwheat bran as a source of rutin and its effect on the rheological and antioxidant properties of wheat-based products. Ind Crops Prod 61:211–216. https://doi.org/10.1016/j.indcrop.2014.07.003

    Article  CAS  Google Scholar 

  11. Nadezhda N, Alekhina EIP, Lukin SI, Smirnykh AA (2016) Grain bread with buckwheat bran flour for a healthy diet. J Engin Appl Scie 11(12):2623–2627. https://doi.org/10.36478/jeasci.2016.2623.2627

    Article  Google Scholar 

  12. Biney K, Beta T (2014) Phenolic profile and carbohydrate digestibility of durum spaghetti enriched with buckwheat flour and bran. LWT Food Sci Technol 57(2):569–579. https://doi.org/10.1016/j.lwt.2014.02.033

    Article  CAS  Google Scholar 

  13. Zanoletti M, Marti A, Marengo M, Iametti S, Pagani MA, Renzetti S (2017) Understanding the influence of buckwheat bran on wheat dough baking performance: mechanistic insights from molecular and material science approaches. Food Res Int 102:728–737. https://doi.org/10.1016/j.foodres.2017.09.052

    Article  CAS  PubMed  Google Scholar 

  14. Sindhu R, Khatkar B (2018) Thermal, structural and textural properties of amaranth and buckwheat starches. J Food Sci Technol 55(12):5153–5160. https://doi.org/10.1007/s13197-018-3474-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Palabiyik I, Yildiz O, Toker OS, Cavus M, Ceylan MM, Yurt B (2016) Investigating the addition of enzymes in gluten-free flours: the effect on pasting and textural properties. LWT Food Sci Technol 69:633–641. https://doi.org/10.1016/j.lwt.2016.01.019

    Article  CAS  Google Scholar 

  16. Fradinho P, Sousa I, Raymundo A (2019) Functional and thermorheological properties of rice flour gels for gluten-free pasta applications. Int J Food Sci Technol 54:1109–1120. https://doi.org/10.1111/ijfs.14001

    Article  CAS  Google Scholar 

  17. Jia B, Yao Y, Liu J, Guan W, Brennan CS, Brennan MA (2019) Physical properties and in vitro starch digestibility of noodles substituted with tartary buckwheat flour. Starch Stärke 71(5–6):1800314. https://doi.org/10.1002/star.201800314

    Article  CAS  Google Scholar 

  18. Yang J, Gu Z, Zhu L, Cheng L, Li Z, Li C, Hong Y (2019) Buckwheat digestibility affected by the chemical and structural features of its main components. Food Hydrocoll 96:596–603. https://doi.org/10.1016/j.foodhyd.2019.06.001

    Article  CAS  Google Scholar 

  19. Giuberti G, Gallo A (2018) Reducing the glycaemic index and increasing the slowly digestible starch content in gluten-free cereal-based foods: a review. Int J Food Sci Technol 53:50–60. https://doi.org/10.1111/ijfs.13552

    Article  CAS  Google Scholar 

  20. AOAC (1996) Official Methods of Analysis. Method 996.11 Starch (Total) in Cereal Products. AOAC international, Rockville, MD, USA

  21. AOAC (2002) Official Methods of Analysis, 17th Ed. Method 2002.02 Resistant Starch Assay Procedure. AOAC International, Rockville, MD, USA

  22. Mæhre HK, Dalheim L, Edvinsen GK, Elvevoll EO, Jensen I-J (2018) Protein determination—method matters. Foods 7(1):5

    Article  Google Scholar 

  23. Kusbandari A, Susanti H (2017) Determination of total phenolic content and antioxidant activity of methanol extract of Maranta arundinacea L. fresh leaf and tuber. OP Conf Ser Mater Sci Eng. https://doi.org/10.1088/1757-899X/259/1/012010

    Article  Google Scholar 

  24. Hossain AKMM, Brennan MA, Mason SL, Guo X, Zeng XA, Brennan CS (2017) The effect of astaxanthin-rich microalgae “Haematococcus pluvialis” and wholemeal flours incorporation in improving the physical and functional properties of cookies. Foods 6(57):2304–8158. https://doi.org/10.3390/foods6080057w

    Article  Google Scholar 

  25. Desai AS, Brennan MA, Brennan CS (2019) Influence of semolina replacement with salmon (Oncorhynchus tschawytscha) powder on the physicochemical attributes of fresh pasta. Int J Food Sci Technol 54:1497–1505. https://doi.org/10.1111/ijfs.13842

    Article  CAS  Google Scholar 

  26. Kang M, Zhai F-H, Li X-X, Cao J-L, Han J-R (2017) Total phenolic contents and antioxidant properties of buckwheat fermented by three strains of Agaricus. J Cereal Sci 73:138–142. https://doi.org/10.1016/j.jcs.2016.12.012

    Article  CAS  Google Scholar 

  27. Liu Y, Cai C, Yao Y, Xu B (2019) Alteration of phenolic profiles and antioxidant capacities of common buckwheat and tartary buckwheat produced in China upon thermal processing. J Sci Food Agric 99(12):5565–5576. https://doi.org/10.1002/jsfa.9825

    Article  CAS  PubMed  Google Scholar 

  28. Yang Q, Zhang W, Luo Y, Li J, Gao J, Yang P, Gao X, Feng B (2019) Comparison of structural and physicochemical properties of starches from five coarse grains. Food Chem 288:283–290. https://doi.org/10.1016/j.foodchem.2019.02.134

    Article  CAS  PubMed  Google Scholar 

  29. Oñate Narciso J, Brennan C (2018) Whey and pea protein fortification of rice starches: effects on protein and starch digestibility and starch pasting properties. Starch Stärke. https://doi.org/10.1002/star.201700315(70 (9-10): n/a-n/a)

    Article  Google Scholar 

  30. Kumar L, Brennan M, Zheng H, Brennan C (2018) The effects of dairy ingredients on the pasting, textural, rheological, freeze-thaw properties and swelling behaviour of oat starch. Food Chem 245:518–524. https://doi.org/10.1016/j.foodchem.2017.10.125

    Article  CAS  PubMed  Google Scholar 

  31. Zhang C, Kim J-Y, Lim S-T (2017) Relationship between pasting parameters and length of paste drop of various starches. LWT Food Sci Technol 79:655–658. https://doi.org/10.1016/j.lwt.2016.11.004

    Article  CAS  Google Scholar 

  32. Gao Y, Janes ME, Chaiya B, Brennan MA, Brennan CS, Prinyawiwatkul W (2018) Gluten-free bakery and pasta products: prevalence and quality improvement. Int J Food Sci Technol 53:19–32. https://doi.org/10.1111/ijfs.13505

    Article  CAS  Google Scholar 

  33. Yadav DN, Rajan A, Sharma GK, Bawa AS (2010) Effect of fiber incorporation on rheological and chapati making quality of wheat flour. J Food Sci Technol 47(2):166–173. https://doi.org/10.1007/s13197-010-0036-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Singh M, Liu SX, Vaughn SF (2013) Effect of corn bran particle size on rheology and pasting characteristics of flour gels. Biocatal Agric Biotechnol 2(2):138–142. https://doi.org/10.1016/j.bcab.2012.12.002

    Article  Google Scholar 

  35. Teng Y, Liu C, Bai J, Liang J (2015) Mixing, tensile and pasting properties of wheat flour mixed with raw and enzyme treated rice bran. J Food Sci Technol 52(5):3014–3021. https://doi.org/10.1007/s13197-014-1366-y

    Article  CAS  PubMed  Google Scholar 

  36. Peng L-X, Wei L-J, Yi Q, Chen G-H, Yao Z-D, Yan Z-Y, Zhao G (2019) In vitro potential of flavonoids from tartary buckwheat on antioxidants activity and starch digestibility. Int J Food Sci Technol 54(6):2209–2218. https://doi.org/10.1111/ijfs.14131

    Article  CAS  Google Scholar 

  37. Lu X, Brennan MA, Serventi L, Liu J, Guan WQ, Brennan CS (2018) Addition of mushroom powder to pasta enhances the antioxidant content and modulates the predictive glycaemic response of pasta. Food Chem 264:199–209. https://doi.org/10.1016/j.foodchem.2018.04.130

    Article  CAS  PubMed  Google Scholar 

  38. Hosaka T, Nii Y, Tomotake H, Ito T, Tamanaha A, Yamasaka Y, Sasaga S, Edazawa K, Tsutsumi R, Shuto E, Okahisa N, Iwata S, Sakai T (2011) Extracts of common buckwheat bran prevent sucrose digestion. J Nutr Sci Vitaminol 57(6):441. https://doi.org/10.3177/jnsv.57.441

    Article  CAS  PubMed  Google Scholar 

  39. Kahraman K, Aktas-Akyildiz E, Ozturk S, Koksel H (2019) Effect of different resistant starch sources and wheat bran on dietary fibre content and in vitro glycaemic index values of cookies. J Cereal Sci 90:102851. https://doi.org/10.1016/j.jcs.2019.102851

    Article  CAS  Google Scholar 

  40. Alam SA, Järvinen J, Kokkonen H, Jurvelin J, Poutanen K, Sozer N (2016) Factors affecting structural properties and in vitro starch digestibility of extruded starchy foams containing bran. J Cereal Sci 71:190–197. https://doi.org/10.1016/j.jcs.2016.08.018

    Article  CAS  Google Scholar 

  41. Junejo SA, Geng H, Wang N, Wang H, Ding Y, Zhou Y, Rashid A (2019) Effects of particle size on physiochemical and in vitro digestion properties of durum wheat bran. Int J Food Sci Technol 54:221–230. https://doi.org/10.1111/ijfs.13928

    Article  CAS  Google Scholar 

  42. Aribas M, Kahraman K, Koksel H (2020) In vitro glycemic index, bile acid binding capacity and mineral bioavailability of spaghetti supplemented with resistant starch type 4 and wheat bran. J Funct Foods 65:103778. https://doi.org/10.1016/j.jff.2020.103778

    Article  CAS  Google Scholar 

  43. Desai AS, Brennan MA, Brennan CS (2018) Effect of fortification with fish (Pseudophycis bachus) powder on nutritional quality of durum wheat pasta. Foods 7(4):62

    Article  Google Scholar 

  44. Karim Z, Holmes M, Orfila C (2017) Inhibitory effect of chlorogenic acid on digestion of potato starch. Food Chem 217:498–504. https://doi.org/10.1016/j.foodchem.2016.08.058

    Article  CAS  PubMed  Google Scholar 

  45. Ketnawa S, Suwannachot J, Ogawa Y (2020) In vitro gastrointestinal digestion of crisphead lettuce: Changes in bioactive compounds and antioxidant potential. Food Chem 311:125885. https://doi.org/10.1016/j.foodchem.2019.125885

    Article  CAS  PubMed  Google Scholar 

  46. Li Q, Chen J, Li T, Liu C, Wang X, Dai T, McClements DJ, Liu J (2015) Impact of in vitro simulated digestion on the potential health benefits of proanthocyanidins from Choerospondias axillaris peels. Food Res Int 78:378–387. https://doi.org/10.1016/j.foodres.2015.09.004

    Article  CAS  PubMed  Google Scholar 

  47. Tagliazucchi D, Verzelloni E, Bertolini D, Conte A (2010) In-vitro bio-accessibility and antioxidant activity of grape polyphenols. Food Chem 120(2):599–606. https://doi.org/10.1016/j.foodchem.2009.10.030

    Article  CAS  Google Scholar 

Download references

Funding

No funding for the project is declared.

Author information

Authors and Affiliations

Authors

Contributions

AR was responsible for data analysis, supervision and writing of the draft; LC was responsible for experimental analysis and data production; MB was responsible for conceptualization, data analysis, supervision and writing of the draft; CB was responsible for conceptualization, funding, data analysis, supervision and writing of the draft.

Corresponding author

Correspondence to Charles Brennan.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Compliance with ethics requirement

This article does not contain any studies with human or animal subjects.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rachman, A., Chen, L., Brennan, M. et al. Effects of addition of buckwheat bran on physicochemical, pasting properties and starch digestion of buckwheat gels. Eur Food Res Technol 246, 2111–2117 (2020). https://doi.org/10.1007/s00217-020-03560-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-020-03560-6

Keywords

Navigation