Skip to main content

The effect of storage conditions on the carotenoid and phenolic acid contents of selected apple cultivars


The present study investigated how different storage conditions affect antioxidant levels in three scab-resistant and powdery mildew-tolerant apple cultivars. The contents of carotenoids, along with free and glycosylated phenolic acids, were quantified in harvested apples and apples stored in boxes with controlled atmospheric conditions (1.2% O2 and 2.2% CO2) and temperature (1 °C), boxes with regulated temperature (1 °C) and storage rooms with a temperature between 1 and 4 °C. All three cultivars demonstrated a continuous decrease in total carotenoid content (sum of ß-carotene, lutein, neoxanthin, violaxanthin, zeaxanthin and antheraxanthin) during the storage period. However, apples stored under controlled atmospheric conditions showed significantly higher carotenoid levels than apples stored under other approaches over 3 and 5 months of storage. Although the storage approach clearly affected carotenoid levels across the three tested cultivars, the ratio between the levels of individual carotenoids was neither affected by storage approach nor cultivar. Free phenolic acid contents were found to be cultivar specific; whereas, all three cultivars demonstrated similar glycosylated phenolic acid contents. Chlorogenic acid was the most common free phenolic acid in all three cultivars, while protocatechuic and caffeic acid were the dominant glycosylated phenolic acids identified from the cultivars. Interestingly, stored apples showed higher free phenolic acid levels than harvested apples; while, both harvested and stored apples showed similar concentrations of glycosylated phenolic acids. As such, none of the three tested storage conditions had a pronounced effect on either group of phenolic acids (total content or concentrations of individual compounds).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    Gutierrez-Grijalva EP, Ambriz-Pere DL, Leyva-Lopez N, Castillo-Lopez RI, Heredia JB (2016) Review: dietary phenolic compounds, health benefits and bioaccessibility. Arch Latinoam Nutr 66(2):87–100

    PubMed  Google Scholar 

  2. 2.

    Yahia EM, Barrera A (2010) Antioxidant capacity and correlation with phenolic compounds and carotenoids in 40 horticultural commodities. In: Erkan M, Aksoy U (eds) Vi international postharvest symposium, vol 877. Acta Horticulturae, pp 1215–1220

  3. 3.

    Sun J, Chu YF, Wu XZ, Liu RH (2002) Antioxidant and anti proliferative activities of common fruits. J Agric Food Chem 50(25):7449–7454.

    Article  PubMed  CAS  Google Scholar 

  4. 4.

    Wolfe KL, Liu RH (2003) Apple peels as a value-added food ingredient. J Agric Food Chem 51(6):1676–1683.

    Article  PubMed  CAS  Google Scholar 

  5. 5.

    Lee J, Chan BLS, Mitchell AE (2017) Identification/quantification of free and bound phenolic acids in peel and pulp of apples (Malus domestica) using high resolution mass spectrometry (HRMS). Food Chem 215:301–310.

    Article  PubMed  CAS  Google Scholar 

  6. 6.

    Boyer J, Liu RH (2004) Apple phytochemicals and their health benefits. Nutr J.

    Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Galler M, Mackinne G (1965) Carotenoids of certain fruits (apple, pear, cherry, strawberry). J Food Sci 30(3):393

    Article  CAS  Google Scholar 

  8. 8.

    Delgado-Pelayo R, Gallardo-Guerrero L, Hornero-Mendez D (2014) Chlorophyll and carotenoid pigments in the peel and flesh of commercial apple fruit varieties. Food Res Int 65:272–281.

    Article  CAS  Google Scholar 

  9. 9.

    Felicetti DA, Schrader LE (2009) Changes in pigment concentrations associated with sunburn browning of five apple cultivars. I. Chlorophylls and carotenoids. Plant Sci 176(1):78–83.

    Article  CAS  Google Scholar 

  10. 10.

    Jakobek L, Barron AR (2016) Ancient apple varieties from Croatia as a source of bioactive polyphenolic compounds. J Food Compos Anal 45:9–15.

    Article  CAS  Google Scholar 

  11. 11.

    Gross J, Zachariae A, Lenz F, Eckhardt G (1978) Carotenoid changes in peel of golden delicious apple during ripening and storage. Z Pflanzenphysiol 89(4):321–332

    Article  CAS  Google Scholar 

  12. 12.

    Lee KW, Kim YJ, Kim DO, Lee HJ, Lee CY (2003) Major phenolics in apple and their contribution to the total antioxidant capacity. J Agric Food Chem 51(22):6516–6520.

    Article  PubMed  CAS  Google Scholar 

  13. 13.

    Kumar P, Sethi S, Sharma RR, Singh S, Saha S, Sharma VK, Verma MK, Sharma SK (2018) Nutritional characterization of apple as a function of genotype. J Food Sci Technol-Mysore 55(7):2729–2738.

    Article  CAS  Google Scholar 

  14. 14.

    Stracke BA, Rufer CE, Watzl B (2010) Polyphenol and carotenoid content of organically and conventionally produced apples (Malus domestica Bork., Elstar Variety) and carrots (Daucus carota L., Narbonne and Nerac Varieties). Ernahr Umsch 57(10):526–531

    CAS  Google Scholar 

  15. 15.

    Yano M, Kato M, Ikoma Y, Kawasaki A, Fukazawa Y, Sugiura M, Matsumoto H, Oohara Y, Nagao A, Ogawa K (2005) Quantitation of carotenoids in raw and processed fruits in Japan. Food Sci Technol Res 11(1):13–18.

    Article  CAS  Google Scholar 

  16. 16.

    Dias MG, Camoes M, Oliveira L (2009) Carotenoids in traditional Portuguese fruits and vegetables. Food Chem 113(3):808–815.

    Article  CAS  Google Scholar 

  17. 17.

    Bahukhandi A, Dhyani P, Bhatt ID, Rawal RS (2018) Variation in polyphenolics and antioxidant activity of traditional apple cultivars from West Himalaya, Uttarakhand. Hortic Plant J 4(4):151–157.

    Article  Google Scholar 

  18. 18.

    Slatnar A, Mikulic-Petkovsek M, Halbwirth H, Stampar F, Stich K, Veberic R (2012) Polyphenol metabolism of developing apple skin of a scab resistant and a susceptible apple cultivar. Trees-Struct Funct 26(1):109–119.

    Article  CAS  Google Scholar 

  19. 19.

    Mikulic-Petkovsek M, Stampar F, Veberic R (2008) Increased phenolic content in apple leaves infected with the apple scab pathogen. J Plant Pathol 90(1):49–55

    Google Scholar 

  20. 20.

    Mikulic-Petkovsek M, Stampar F, Veberic R (2009) Accumulation of phenolic compounds in apple in response to infection by the scab pathogen, Venturia inaequalis. Physiol Mol Plant Pathol 74(1):60–67.

    Article  CAS  Google Scholar 

  21. 21.

    Mikulic-Petkovsek M, Stampar F, Veberic R (2007) Parameters of inner quality of the apple scab resistant and susceptible apple cultivars (Malus domestica Borkh.). Sci Hortic 114(1):37–44.

    Article  Google Scholar 

  22. 22.

    Manganaris GA, Goulas V, Mellidou I, Drogoudi P (2018) Antioxidant phytochemicals in fresh produce: exploitation of genotype variation and advancements in analytical protocols. Front Chem.

    Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Radenkovs V, Juhnevica-Radenkova K (2017) Effect of storage technology on the chemical composition of apples of the cultivar ‘Auksis’. Zemdirb Agric 104(4):359–368.

    Article  Google Scholar 

  24. 24.

    Soleti R, Hilairet G, Mallegol P, Dourguia C, Frifra M, Guillou MC, Gacel A, Guyot S, Pignon P, Basset L, Cadot Y, Renou JP, Orsel M, Andriantsitohaina R (2018) Screening of ordinary commercial varieties of apple fruits under different storage conditions for their potential vascular and metabolic protective properties. Food Funct 9(11):5855–5867.

    Article  PubMed  CAS  Google Scholar 

  25. 25.

    Bessemans N, Verboven P, Verlinden BE, Nicolai BM (2016) A novel type of dynamic controlled atmosphere storage based on the respiratory quotient (RQ-DCA). Postharvest Biol Technol 115:91–102.

    Article  CAS  Google Scholar 

  26. 26.

    Lee J, Kang IK, Nock JF, Watkins CB (2019) Effects of preharvest and postharvest applications of 1-methylcyclopropene on fruit quality and physiological disorders of ‘fuji’ apples during storage at warm and cold temperatures. HortScience 54(8):1375–1383.

    Article  Google Scholar 

  27. 27.

    Gwanpua SG, Verlinden BE, Hertog M, Nicolai BM, Geeraerd AH (2017) A mechanistic modelling approach to understand 1-MCP inhibition of ethylene action and quality changes during ripening of apples. J Sci Food Agric 97(11):3802–3813.

    Article  PubMed  CAS  Google Scholar 

  28. 28.

    Kalinowska M, Bielawska A, Lewandowska-Siwkiewicz H, Priebe W, Lewandowski W (2014) Apples: content of phenolic compounds vs. variety, part of apple and cultivation model, extraction of phenolic compounds, biological properties. Plant Physiol Biochem 84:169–188.

    Article  PubMed  CAS  Google Scholar 

  29. 29.

    Gonzalez-Talice J, Yuri JA, del Pozo A (2013) Relations among pigments, color and phenolic concentrations in the peel of two Gala apple strains according to canopy position and light environment. Sci Hortic 151:83–89.

    Article  CAS  Google Scholar 

  30. 30.

    Prochazkova D, Haisel D, Pavlikova D, Szakova J, Wilhelmova N (2014) The impact of increased soil risk elements on carotenoid contents. Cent Eur J Biol 9(7):678–685.

    Article  CAS  Google Scholar 

  31. 31.

    Eliasova K, Vondrakova Z, Malbeck J, Travnickova A, Pesek B, Vagner M, Cvikrova M (2017) Histological and biochemical response of Norway spruce somatic embryos to UV-B irradiation. Trees-Struct Funct 31(4):1279–1293.

    Article  CAS  Google Scholar 

  32. 32.

    Alberti A, Zielinski AAF, Couto M, Judacewski P, Mafra LI, Nogueira A (2017) Distribution of phenolic compounds and antioxidant capacity in apples tissues during ripening. J Food Sci Technol-Mysore 54(6):1511–1518.

    Article  CAS  Google Scholar 

  33. 33.

    Huber GM, Rupasinghe HPV (2009) Phenolic profiles and antioxidant properties of apple skin extracts. J Food Sci 74(9):C693–C700.

    Article  PubMed  CAS  Google Scholar 

  34. 34.

    Vrhovsek U, Rigo A, Tonon D, Mattivi F (2004) Quantitation of polyphenols in different apple varieties. J Agric Food Chem 52(21):6532–6538.

    Article  PubMed  CAS  Google Scholar 

  35. 35.

    Stanger MC, Steffens CA, Soethe C, Moreira MA, do Amarante CVT (2017) Phenolic content and antioxidant activity during the development of ‘Brookfield’ and ‘Mishima’ apples. J Agric Food Chem 65(17):3453–3459.

    Article  PubMed  CAS  Google Scholar 

  36. 36.

    Jakobek L, Garcia-Villalba R, Tomas-Barberan FA (2013) Polyphenolic characterisation of old local apple varieties from Southeastern European region. J Food Compos Anal 31(2):199–211.

    Article  CAS  Google Scholar 

  37. 37.

    Khanizadeh S, Tsao R, Rekika D, Yang R, Charles MT, Rupasinghe HPV (2008) Polyphenol composition and total antioxidant capacity of selected apple genotypes for processing. J Food Compos Anal 21(5):396–401.

    Article  CAS  Google Scholar 

  38. 38.

    McGhie TK, Hunt M, Barnett LE (2005) Cultivar and growing region determine the antioxidant polyphenolic concentration and composition of apples grown in New Zealand. J Agric Food Chem 53(8):3065–3070.

    Article  PubMed  CAS  Google Scholar 

  39. 39.

    Scalzo J, Politi A, Pellegrini N, Mezzetti B, Battino M (2005) Plant genotype affects total antioxidant capacity and phenolic contents in fruit. Nutrition 21(2):207–213.

    Article  PubMed  CAS  Google Scholar 

  40. 40.

    Tarola AM, Girelli AM, D’Ascenzo F (2019) Bioactive polyphenol profiles and antioxidant activity in italian apples varietiesI. Ital J Food Sci 31(2):243–252

    CAS  Google Scholar 

  41. 41.

    Lata B, Trampczynska A, Paczesna J (2009) Cultivar variation in apple peel and whole fruit phenolic composition. Sci Hortic 121(2):176–181.

    Article  CAS  Google Scholar 

  42. 42.

    Francini A, Sebastiani L (2013) Phenolic compounds in apple (Malus × domestica borkh.): Compounds characterization and stability during postharvest and after processing. Antioxidants 2(3):181–193.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. 43.

    Burton GW (1989) Antioxidant action of carotenoids. J Nutr 119(1):109–111

    Article  CAS  Google Scholar 

  44. 44.

    Dias MG, Camoes M, Oliveira L (2014) Carotenoid stability in fruits, vegetables and working standards—effect of storage temperature and time. Food Chem 156:37–41.

    Article  PubMed  CAS  Google Scholar 

  45. 45.

    van der Sluis AA, Dekker M, de Jager A, Jongen WMF (2001) Activity and concentration of polyphenolic antioxidants in apple: effect of cultivar, harvest year, and storage conditions. J Agric Food Chem 49(8):3606–3613.

    Article  PubMed  CAS  Google Scholar 

  46. 46.

    Tarozzi A, Marchesi A, Cantelli-Forti G, Hrelia P (2004) Cold-storage affects antioxidant properties of apples in caco-2 cells. J Nutr 134(5):1105–1109

    Article  CAS  Google Scholar 

  47. 47.

    Carbone K, Giannini B, Picchi V, Lo Scalzo R, Cecchini F (2011) Phenolic composition and free radical scavenging activity of different apple varieties in relation to the cultivar, tissue type and storage. Food Chem 127(2):493–500.

    Article  PubMed  CAS  Google Scholar 

  48. 48.

    Burda S, Oleszek W, Lee CY (1990) Phenolic-compounds and their changes in apples during maturation and cold storage. J Agric Food Chem 38(4):945–948.

    Article  CAS  Google Scholar 

  49. 49.

    Napolitano A, Cascone A, Graziani G, Ferracane R, Scalfi L, Di Vaio C, Ritieni A, Fogliano V (2004) Influence of variety and storage on the polyphenol composition of apple flesh. J Agric Food Chem 52(21):6526–6531.

    Article  PubMed  CAS  Google Scholar 

  50. 50.

    Awad MA, de Jager A (2000) Flavonoid and chlorogenic acid concentrations in skin of ‘Jonagold’ and ‘Elstar’ apples during and after regular and ultra low oxygen storage. Postharvest Biol Technol 20(1):15–24.

    Article  CAS  Google Scholar 

  51. 51.

    Koricanac A, Miletic N, Popovic B, Mitrovic O, Lukic M, Pesakovic M, Tomic J (2020) The effect of ULO and NA storage on changes in the quality of apple fruit (Malus domestica Borkh) during shelf life. Agron Basel 10(1):25.

    Article  CAS  Google Scholar 

Download references


This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic (project LTC 17034; within CA COST Action CA 15136—Eurocaroten). The authors thank Sees-editing Ltd. for linguistic editing.

Author information




ZV and MC conceived and designed the research, analyzed the data and wrote the manuscript. The chemical analyses were performed by AT, JM (phenolic acids) and DH (carotenoids). RČ was responsible for selecting the apple cultivars and collecting material for sampling. All of the authors have read and approved the final manuscript.

Corresponding author

Correspondence to Zuzana Vondráková.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Compliance with ethical requirements

This article does not contain any studies with human or animal subjects.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplement Fig. 1

MS/MS chromatograms and product ion spectra of standards of phenolic acids recorded in negative ESI mode. Deuterated internal standards are marked by *. (PUB 148 kb)

Supplementary material 2 (DOC 35 kb)

Supplementary material 3 (DOC 41 kb)

Supplementary material 4 (DOC 50 kb)

Supplementary material 5 (DOCX 55 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vondráková, Z., Trávníčková, A., Malbeck, J. et al. The effect of storage conditions on the carotenoid and phenolic acid contents of selected apple cultivars. Eur Food Res Technol 246, 1783–1794 (2020).

Download citation


  • Antioxidants
  • Free and glycosylated phenolic acids
  • Harvest
  • Storage conditions