High hydrostatic pressure processing enhances pectin solubilisation on apple by-product improving techno-functional properties

Abstract

Apple by-product is an extensive and inexpensive residue rich in dietary fibre, mainly insoluble fraction. Regarding soluble fibre, pectins are the predominant component responsible for specific physicochemical characteristics which are intimately related to its functional properties. To valorise apple by-product enhancing the solubility of pectins, high hydrostatic pressure (HHP) processing at 200–600 MPa during 15 and 30 min under controlled temperature was performed. Release of soluble carbohydrates was monitored using ion-exchange HPLC method with refractive index detection and dietary fibre composition was studied. A value of 200 MPa during 15 min was enough to enhance the solubilisation of cell wall components, mainly pectins, increasing significantly (p < 0.05) about threefold high/medium molecular weight soluble carbohydrates and maintaining total phenolic content. HHP preserved brightness, yellowish hue and slightly decreased pH. Furthermore, this valorisation procedure upgraded emulsion activity and stability improving the technological aptitude and enhanced swelling, oil-holding and cation-exchange capacities suggesting a potential lipid-lowering effect.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. 1.

    Mateos-Aparicio I, Matias A (2019) Food industry processing by-products in foods. In: Galanakis CM (ed) The role of alternative and innovative food ingredients and products in consumer wellness. Elsevier, Academic Press, London, pp 239–280

    Google Scholar 

  2. 2.

    Elleuch M, Bedigian D, Roiseux O, Besbes S, Blecker C, Attia H (2011) Dietary fibre and fibre-rich by-products of food processing: Characterisation, technological functionality and commercial applications: a review. Food Chem 124(2):411–421

    CAS  Article  Google Scholar 

  3. 3.

    Mateos-Aparicio I, Jiménez de la Peña R, Pérez-Cózar RP, Redondo-Cuenca A., Villanueva-Suárez M.J. (2020) Apple by-product dietary fibre exhibits potential prebiotic and hypolipidemic effectsinhigh-fat fed Wistar rats. Bioactive Carbohydrates and Dietary Fibre, 100219.

  4. 4.

    Yan L, Li T, Liu C, Zheng L (2019) Effects of high hydrostatic pressure and superfine grinding treatment on physicochemical/functional properties of pear pomace and chemical composition of its soluble dietary fibre. LWT 107:171–177

    CAS  Article  Google Scholar 

  5. 5.

    Briones-Labarca V, Venegas-Cubillos G, Ortiz-Portilla S, Chacana-Ojeda M, Maureira H (2011) Effects of high hydrostatic pressure (HHP) on bioaccessibility, as well as antioxidant activity, mineral and starch contents in Granny Smith apple. Food Chem 128(2):520–529

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    O'Shea N, Arendt EK, Gallagher E (2012) Dietary fibre and phytochemical characteristics of fruit and vegetable by-products and their recent applications as novel ingredients in food products. Innovative Food Sci Emerging Technol 16:1–10

    CAS  Article  Google Scholar 

  7. 7.

    Gibson GR, Hutkins R, Sanders ME, Prescott SL, Reimer RA, Salminen SJ, Scott K, Stanton C, Swanson KS, Cani PD, Verbeke K, Reid G (2017) Expert consensus document: the international scientific association for probiotics and prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat Rev Gastroenterol Hepatol 14(8):491

    Article  PubMed  Google Scholar 

  8. 8.

    Onumpai C, Kolida S, Bonnin E, Rastall RA (2011) Microbial utilization and selectivity of pectin fractions with various structures. Appl Environ Microbiol 77(16):5747–5754

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. 9.

    Cruz MG, Bastos R, Pinto M, Ferreira JM, Santos JF, Wessel DF, Coelho E, Coimbra MA (2018) Waste mitigation: from an effluent of apple juice concentrate industry to a valuable ingredient for food and feed applications. J Clean Prod 193:652–660

    CAS  Article  Google Scholar 

  10. 10.

    Li X, He X, Lv Y, He Q (2014) Extraction and functional properties of water-soluble dietary fiber from apple pomace. J Food Process Eng 37(3):293–298

    CAS  Article  Google Scholar 

  11. 11.

    Mateos-Aparicio I, Mateos-Peinado C, Jimenez-Escrig A, Ruperez P (2010) Multifunctional antioxidant activity of polysaccharide fractions from the soybeanbyproduct okara. Carbohyd Polym 82:245–250

    CAS  Article  Google Scholar 

  12. 12.

    Wikiera A, Mika M, Starzyńska-Janiszewska A, Stodolak B (2015) Development of complete hydrolysis of pectins from apple pomace. Food Chem 172:675–680

    CAS  PubMed  Article  Google Scholar 

  13. 13.

    Mateos-Aparicio I, Mateos-Peinado C, Rupérez P (2010) High hydrostatic pressure improves the functionality of dietary fibre in okara by-product from soybean. Innovative Food Sci Emerging Technol 11(3):445–450

    CAS  Article  Google Scholar 

  14. 14.

    Pérez-López E, Mateos-Aparicio I, Ruperez P (2017) High hydrostatic pressure aided by food-grade enzymes as a novel approach for Okara valorization. Innovative Food Sci Emerging Technol 42:197–203

    Article  CAS  Google Scholar 

  15. 15.

    Arshadi M, Attard TM, Lukasik RM, Brncic M, da Costa Lopes AM, Finell M, Geladi P, Gerschenson LN, Gogus F, Herrero M, Hunt AJ, Ibañez E, Kamm B, Mateos-Aparicio I, Matias A, Mavroudis NE, Monteri E, Morais ARC, Nilsson C, Papaioannoua EH, Riche A, Ruérez P, Škrbić B, Bodroža Solarov M, Švarc-Gajić J, Waldron K, Yuste F (2016) Pre-treatment and extraction techniques for recovery of added value compounds from wastes throughout the agri-food chain. Green Chem 18(23):6160–6204

    CAS  Article  Google Scholar 

  16. 16.

    Huang HW, Wu SJ, Lu JK, Shyu YT, Wang CY (2017) Current status and future trends of high-pressure processing in food industry. Food Control 72:1–8

    Article  Google Scholar 

  17. 17.

    Yamamoto K (2017) Food processing by high hydrostatic pressure. Biosci Biotechnol Biochem 81(4):672–679

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Pérez-López E, Cela D, Costabile A, Mateos-Aparicio I, Rupérez P (2016) In vitro fermentability and prebiotic potential of soyabean Okara by human faecal microbiota. Br J Nutr 116(6):1116–1124

    PubMed  Article  CAS  Google Scholar 

  19. 19.

    Pérez-López E, Veses AM, Redondo N, Tenorio-Sanz MD, Villanueva MJ, Redondo-Cuenca A, Marcos E, Mateos-Aparicio I, Rupérez P (2018) Soybean Okara modulates gut microbiota in rats fed a high-fat diet. Bioactive Carbohydrates Dietary Fibre 16:100–107

    Article  CAS  Google Scholar 

  20. 20.

    AOAC (1995) Method 991.42 & 993.19. Official methods of analysis, 16th edn. Association of Official Analytical Chemists, Washington

    Google Scholar 

  21. 21.

    Mateos-Aparicio I, Redondo-Cuenca A, Villanueva-Suárez MJ (2010) Isolation and characterisation of cell wall polysaccharides from legume by-products: okara (soymilk residue), pea pod and broad bean pod. Food Chem 122(1):339–345

    CAS  Article  Google Scholar 

  22. 22.

    Benítez V, Mollá E, Martín-Cabrejas MA, Aguilera Y, López-Andréu FJ, Esteban RM (2011) Effect of sterilisation on dietary fibre and physicochemical properties of onion by-products. Food Chem 127(2):501–507

    PubMed  Article  CAS  Google Scholar 

  23. 23.

    Xie F, Li M, Lan X, Zhang W, Gong S, Wu J, Wang Z (2017) Modification of dietary fibers from purple-fleshed potatoes (Heimeiren) with high hydrostatic pressure and high pressure homogenization processing: A comparative study. Innovative Food Sci Emerging Technol 42:157–164

    CAS  Article  Google Scholar 

  24. 24.

    Del Pino-García R, García-Lomillo J, Rivero-Pérez MD, González-SanJosé ML, Muñiz P (2015) Adaptation and validation of QUick, easy, new, CHEap, and reproducible (QUENCHER) antioxidant capacity assays in model products obtained from residual wine pomace. J Agric Food Chem 63(31):6922–6931

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    Palombini SV, Claus T, Maruyama SA, Carbonera F, Montanher PF, Visentainer JV, Gomes STM, Matsushita M (2016) Optimization of a new methodology for determination of total phenolic content in rice employing fast blue BB and QUENCHER procedure. J Braz Chem Soc 27(7):1188–1194

    CAS  Google Scholar 

  26. 26.

    Gökmen V, Serpen A, Fogliano V (2009) Direct measurement of the total antioxidant capacity of foods: the ‘QUENCHER’approach. Trends Food Sci Technol 20(6–7):278–288

    Article  CAS  Google Scholar 

  27. 27.

    Filip M, Vlassa M, Coman V, Halmagyi A (2016) Simultaneous determination of glucose, fructose, sucrose and sorbitol in the leaf and fruit peel of different apple cultivars by the HPLC–RI optimized method. Food Chem 199:653–659

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Weiβ K, Alt M (2017) Determination of single sugars, including inulin, in plants and feed materials by high-performance liquid chromatography and refraction index detection. Fermentation 3(3):36

    Article  CAS  Google Scholar 

  29. 29.

    He K, Mergens B, Yatcilla M, Zheng Q, Bao Z, Zhang Y, Li X, Xie Z (2018) Molecular weight determination of aloe polysaccharides using size exclusion chromatography coupled with multi-angle laser light scattering and refractive index detectors. J AOAC Int 101(6):1729–1740

    CAS  PubMed  Article  Google Scholar 

  30. 30.

    Gómez-Ordóñez E, Jiménez-Escrig A, Rupérez P (2012) Molecular weight distribution of polysaccharides from edible seaweeds by high-performance size-exclusion chromatography (HPSEC). Talanta 93:153–159

    PubMed  Article  CAS  Google Scholar 

  31. 31.

    Condezo-Hoyos L, Pérez-López E, Rupérez P (2015) Improved evaporative light scattering detection for carbohydrate analysis. Food Chem 180:265–271

    CAS  PubMed  Article  Google Scholar 

  32. 32.

    Bermúdez-Aguirre D, Barbosa-Cánovas GV (2011) An update on high hydrostatic pressure, from the laboratory to industrial applications. Food Eng Rev 3(1):44–61

    Article  Google Scholar 

  33. 33.

    Zhang L, Ye X, Ding T, Sun X, Xu Y, Liu D (2013) Ultrasound effects on the degradation kinetics, structure and rheological properties of apple pectin. Ultrason Sonochem 20(1):222–231

    CAS  PubMed  Article  Google Scholar 

  34. 34.

    Wennberg, M., & Nyman, M. (2004). On the possibility of using high pressure treatment to modify physico-chemical properties of dietary fibre in white cabbage (Brassica oleracea var. capitata). Innovative Food Sci Emerging Technol 5(2): 171–177.

  35. 35.

    Yu G, Bei J, Zhao J, Li Q, Cheng C (2018) Modification of carrot (Daucus carota Linn. var. Sativa Hoffm.) pomace insoluble dietary fiber with complex enzyme method, ultrafine comminution, and high hydrostatic pressure. Food Chem 257:333–340

    CAS  PubMed  Article  Google Scholar 

  36. 36.

    Müller-Maatsch J, Bencivenni M, Caligiani A, Tedeschi T, Bruggeman G, Bosch M, Petrusan J, Van Droogenbroeck B, Elst K, Sforza S (2016) Pectin content and composition from different food waste streams. Food Chem 201:37–45

    PubMed  Article  CAS  Google Scholar 

  37. 37.

    Villanueva-Suárez MJ, Mateos-Aparicio I, Pérez-Cózar ML, Yokoyama W, Redondo-Cuenca A (2019) Hypolipidemic effects of dietary fibre from an artichoke by-product in Syrian hamsters. J Funct Foods 56:156–162

    Article  CAS  Google Scholar 

  38. 38.

    Guo X, Zhao W, Pang X, Liao X, Hu X, Wu J (2014) Emulsion stabilizing properties of pectins extracted by high hydrostatic pressure, high-speed shearing homogenization and traditional thermal methods: a comparative study. Food Hydrocoll 35:217–225

    CAS  Article  Google Scholar 

  39. 39.

    Ngouémazong ED, Christiaens S, Shpigelman A, Van Loey A, Hendrickx M (2015) The emulsifying and emulsion-stabilizing properties of pectin: a review. Comprehensive Rev Food Sci Food Saf 14(6):705–718

    Article  CAS  Google Scholar 

  40. 40.

    Landl A, Abadias M, Sárraga C, Viñas I, Picouet PA (2010) Effect of high pressure processing on the quality of acidified Granny Smith apple purée product. Innovative Food Sci Emerging Technol 11(4):557–564

    CAS  Article  Google Scholar 

  41. 41.

    Aguayo, E., Tarazona-Díaz, M. P., Martínez-Sánchez, A., & García-González, A. (2017). Influence of moderate high-pressure homogenization on quality of bioactive compounds of functional food supplements. J Food Q 2017, article ID. 2856125.

  42. 42.

    Verma DK, Srivastav PP (2020) Bioactive compounds of rice (Oryza sativa L.): review on paradigm and its potential benefit in human health. Trends Food Sci Technol 97:355–365

    CAS  Article  Google Scholar 

  43. 43.

    Delpino-Rius A, Eras J, Vilaró F, Cubero MÁ, Balcells M, Canela-Garayoa R (2015) Characterisation of phenolic compounds in processed fibres from the juice industry. Food Chem 172:575–584

    CAS  PubMed  Article  Google Scholar 

  44. 44.

    Chen MH, McClung AM, Bergman CJ (2016) Concentrations of oligomers and polymers of proanthocyanidins in red and purple rice bran and their relationships to total phenolics, flavonoids, antioxidant capacity and whole grain color. Food Chem 208:279–287

    CAS  PubMed  Article  Google Scholar 

  45. 45.

    Delgado-Pelayo R, Gallardo-Guerrero L, Hornero-Méndez D (2014) Chlorophyll and carotenoid pigments in the peel and flesh of commercial apple fruit varieties. Food Res Int 65:272–281

    CAS  Article  Google Scholar 

  46. 46.

    Plaza L, Colina C, de Ancos B, Sánchez-Moreno C, Cano MP (2012) Influence of ripening and astringency on carotenoid content of high-pressure treated persimmon fruit (Diospyros kaki L.). Food Chem 130(3): 591–597.

  47. 47.

    Marszałek K, Mitek M, Skąpska S (2015) The effect of thermal pasteurization and high pressure processing at cold and mild temperatures on the chemical composition, microbial and enzyme activity in strawberry purée. Innovative Food Sci Emerging Technol 27:48–56

    Article  CAS  Google Scholar 

  48. 48.

    Escobedo-Avellaneda Z, Gutiérrez-Uribe J, Valdez-Fragoso A, Torres JA, Welti-Chanes J (2015) High hydrostatic pressure combined with mild temperature for the preservation of comminuted orange: effects on functional compounds and antioxidant activity. Food Bioprocess Technol 8(5):1032–1044

    CAS  Article  Google Scholar 

  49. 49.

    Westphal A, Schwarzenbolz U, Böhm V (2018) Effects of high pressure processing on bioactive compounds in spinach and rosehip puree. Eur Food Res Technol 244(3):395–407

    CAS  Article  Google Scholar 

Download references

Acknowledgements

Rocío Teresa Jiménez de la Peña Armada is grateful to Rafael Folch Foundation for her PhD grant (2020/E02).

Funding

This work was supported by Project AGL2016-77056R from the Spanish AEI (FEDER, UE).

Author information

Affiliations

Authors

Corresponding author

Correspondence to I. Mateos-Aparicio.

Ethics declarations

Compliance with ethics requirements

This article does not contain any studies with human or animal subjects.

Conflict of interest

We have no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

De la Peña Armada, R., Villanueva-Suárez, M.J. & Mateos-Aparicio, I. High hydrostatic pressure processing enhances pectin solubilisation on apple by-product improving techno-functional properties. Eur Food Res Technol 246, 1691–1702 (2020). https://doi.org/10.1007/s00217-020-03524-w

Download citation

Keywords

  • Dietary fibre
  • Pectin
  • Food waste
  • By-product
  • Green technology
  • High hydrostatic pressure