Skip to main content

Model studies on benzene formation from benzaldehyde

Abstract

The carcinogenic aromatic hydrocarbon benzene has recently been detected in drinks with added cherry flavour, and it was suggested that benzene could be formed from benzaldehyde used as flavouring. To get a deeper insight into parameters favouring benzene formation, the influence of light, pH, oxygen, temperature as well as presence of transition metal ions was studied in model solutions of benzaldehyde. It was found that in particular irradiation with light increased benzene formation. However, this was not observed in a cherry juice most probably due to absorption of light by the red colour. Therefore, the benzene detected in commercial cherry juices may have been added as contaminant of the benzaldehyde used in the flavouring. The assumption was confirmed by the analysis of commercial flavourings. Thus, to avoid benzene formation in flavourings, amber glass vials must be used during production, storage and sale.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Becalski A, Nyman P (2009) Benzene. In: Stadler RH, Lineback DR (eds) Process-induced food toxicants: Occurrence, formation, mitigation, and health risks, 1st edn. Wiley, New Jersey

    Google Scholar 

  2. 2.

    Hartmann F (2007) Benzol in Erfrischungsgetränken. In: Bundesamt für Verbraucherschutz und Lebensmittelsicherheit (eds) Berichte zur Lebensmittelsicherheit 2007. Birkhäuser Verlag, Basel (in German)

    Google Scholar 

  3. 3.

    Gardner LK, Lawrence GD (1993) Benzene production from decarboxylation of benzoic acid in the presence of ascorbic acid and a transition-metal catalyst. J Agric Food Chem 41:693–695

    CAS  Article  Google Scholar 

  4. 4.

    Nyman PJ, Wamer WG, Begley TH, Diachenko GW, Perfetti GA (2010) Evaluation of accelerated UV and thermal testing for benzene formation in beverages containing benzoate and ascorbic acid. J Food Sci 75:263–267

    Article  Google Scholar 

  5. 5.

    Vinci RM, Meulenaer BD, Andjelkovic M, Canfyn M, Overmeire IV, Loco JV (2011) Factors influencing benzene formation from the decarboxylation of benzoate in liquid models systems. J Agric Food Chem 59:12975–12981

    Article  Google Scholar 

  6. 6.

    Casado FJ, Sánchez AH, Castro AD, Rejano L, Beato VM, Montaño A (2011) Fermented vegetables containing benzoic and ascorbic acids as additives: Benzene formation during storage and impact of additives on quality parameters. J Agric Food Chem 59:2403–2409

    CAS  Article  Google Scholar 

  7. 7.

    Aprea E, Biasioli F, Carlin S, Märk TD, Gasperi F (2008) Monitoring benzene formation from benzoate in model systems by proton transfer reaction-mass spectrometry. Int J Mass Spectrom 275:117–121

    CAS  Article  Google Scholar 

  8. 8.

    Lachenmeier DW, Steinbrenner N, Löbell-Behrends S, Reusch H, Kuballa T (2010) Benzene contamination in heat-treated carrot products including baby foods. Open Toxicol J 4:39–42

    CAS  Article  Google Scholar 

  9. 9.

    Lachenmeier DW, Kuballa T, Reusch H, Sproll C, Kersting M, Alexy U (2010) Benzene in infant carrot juice: further insight into formation mechanism and risk assessment including consumption data from the DONALD study. Food Chem Toxicol 48:291–297

    CAS  Article  Google Scholar 

  10. 10.

    Steinbrenner N, Löbell-Behrends S, Reusch H, Kuballa T, Lachenmeier DW (2010) Benzol in Lebensmitteln—ein Überblick. J Verbr Lebensm 5:443–452

    CAS  Article  Google Scholar 

  11. 11.

    Stiftung Warentest (2013) Wasser mit Geschmack: Krebserzeugendes Benzol gefunden

  12. 12.

    Stiftung Warentest (2013) Aromatisierte Getränke mit Kirschgeschmack: Kritisches Kirscharoma

  13. 13.

    TrinkwV (2018) Verordnung über die Qualität von Wasser für den menschlichen Gebrauch

  14. 14.

    McNeal TP, Nyman PJ, Diachenko GW, Hollifield HC (1993) Survey of benzene in foods by using headspace concentration techniques and capillary gas chromatography. J AOAC Int 76:1213–1219

    CAS  Article  Google Scholar 

  15. 15.

    Loch C, Reusch H, Ruge I, Godelmann R, Pflaum T, Kuballa T, Schumacher S, Lachenmeier DW (2016) Benzaldehyde in cherry flavour as a precursor of benzene formation in beverages. Food Chem 206:74–77

    CAS  Article  Google Scholar 

  16. 16.

    Frank S, Hofmann T, Schieberle P (2019) Quantitation of benzene in flavourings and liquid foods containing added cherry-type flavour by a careful work-up procedure followed by a stable isotope dilution assay. Eur Food Res Technol 245:1605–1610

    CAS  Article  Google Scholar 

  17. 17.

    Pankow JF, Kim K, McWhirter KJ, Luo W, Escobedo JO, Strongin RM, Duell AK, Peyton DH (2017) Benzene formation in electronic cigarettes. PLoS ONE. https://doi.org/10.1371/journal.pone.0173055

    Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Han J, Lin K, Sequeira C, Borchers CH (2015) An isotope-labeled chemical derivatization method for the quantitation of short-chain fatty acids in human feces by liquid chromatography-tandem mass spectrometry. Anal Chim Acta 854:86–94

    CAS  Article  Google Scholar 

  19. 19.

    Hofstetter CK, Dunkel A, Hofmann T (2019) Unified flavor quantitation: Toward high-throughput analysis of key food odorants and tastants by means of ultra-high-performance liquid chromatography tandem mass spectrometry. J Agric Food Chem 67:8599–8608

    CAS  Article  Google Scholar 

  20. 20.

    Anumolu PD, Krishna VL, Rajesh CH, Alekya V, Priyanka B, Sunitha G (2016) Gas chromatographic assessment of residual solvents present in excipient-benzyl alcohol. J Chromatogr Sep Tech 7:321

    Google Scholar 

  21. 21.

    International Council of Beverages Associations (2006) Leitlinien für die Verringerung des Potentials der Benzolbildung in Getränken

Download references

Acknowledgements

The authors thank L. Romanski, I. Otte, K. Booz, and S. Kaviani-Nejad for technical assistance and S. Bijewitz for drawing the figures.

Funding

This research project was supported by the German Ministry of Economics and Energy (via AiF) and the FEI (Forschungskreis der Ernährungsindustrie e.V., Bonn). Project AiF 18813 N.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Peter Schieberle.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Compliance with ethics requirements

This article does not contain any studies with human or animal subjects.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Frank, S., Dunkel, A. & Schieberle, P. Model studies on benzene formation from benzaldehyde. Eur Food Res Technol 246, 901–908 (2020). https://doi.org/10.1007/s00217-020-03455-6

Download citation

Keywords

  • Benzene
  • Benzaldehyde
  • Light
  • Food flavouring
  • Cherry beverage