Blue wine, a color obtained with synthetic blue dye addition: two case studies


Blue wine, recently appeared on the French market, is part of the effort made by winemakers in creating new and attractive wine, while maintaining traditional manufacturing processes. According to the labels on the bottles, the blue wine prides itself on being a natural wine, whose blue color is also obtained in a natural way by means of a very particular wine-making process. This study reports first analyses carried out on two blue wines to determine the origin of the blue color. The results show that a well-known coloring food additive was used in the wine and identified as Brilliant Blue FCF by UV–Vis spectroscopy and high-resolution mass spectrometry. The amounts of Brilliant Blue FCF were assessed in the two wines by high-performance liquid chromatography coupled to UV–Vis spectroscopy and found to be 8.62 ± 0.04 mg L−1 and 5.46 ± 0.01 mg L−1 in Vindigo and Imajyne wines, respectively. Such addition was, however, not specified by the winemakers.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3


  1. 1.

    Spence C (2018) What is so unappealing about blue food and drink? Int J Gastron Food Sci 14:1–8.

    Article  Google Scholar 

  2. 2.

    Imajyne (2018) Imajyne, le vin bleu Corse., Accessed 20 Dec 2018

  3. 3.

    Vindigo (2018) Vindigo bleu, le vin bleu français., Accessed 7 Dec 2018

  4. 4.

    Wrolstad RE, Culver CA (2012) Alternatives to those artificial FD&C food colorants. Annu Rev Food Sci Technol 3(3):59–77.

    Article  CAS  PubMed  Google Scholar 

  5. 5.

    Roda-Serrat MC, Christensen KV, El-Houri RB, Frette X, Christensen LP (2018) Fast cleavage of phycocyanobilin from phycocyanin for use in food colouring. Food Chem 240:655–661.

    Article  CAS  PubMed  Google Scholar 

  6. 6.

    Falkeborg MF, Roda-Serrat MC, Burnaes KL, Nielsen ALD (2018) Stabilising phycocyanin by anionic micelles. Food Chem 239:771–780.

    Article  CAS  PubMed  Google Scholar 

  7. 7.

    Newsome AG, Culver CA, van Breemen RB (2014) Nature’s palette: the search for natural blue colorants. J Agric Food Chem 62(28):6498–6511.

    Article  CAS  PubMed  Google Scholar 

  8. 8.

    Garcı́a-Falcón MS, Simal-Gándara J (2005) Determination of food dyes in soft drinks containing natural pigments by liquid chromatography with minimal clean-up. Food Control 16(3):293–297.

    Article  CAS  Google Scholar 

  9. 9.

    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2016) Gaussian 09 Revision D.01. Gaussian Inc, Wallingford

    Google Scholar 

  10. 10.

    Hehre WJ, Ditchfield R, Pople JA (1972) Self-consistent molecular orbital methods. XII. Further extensions of Gaussian-type basis sets for use in molecular orbital studies of organic molecules. J Chem Phys 56(5):2257–2261

    Article  CAS  Google Scholar 

  11. 11.

    Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865–3868

    Article  CAS  PubMed  Google Scholar 

  12. 12.

    Perdew JP, Burke K, Ernzerhof M (1997) Generalized gradient approximation made simple [Phys. Rev. Lett. 77, 3865 (1996)]. Phys Rev Lett 78(7):1396

    Article  CAS  Google Scholar 

  13. 13.

    Marenich AV, Cramer CJ, Truhlar DG (2009) Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B 113(18):6378–6396

    Article  CAS  PubMed  Google Scholar 

  14. 14.

    Miertuš S, Scrocco E, Tomasi J (1981) Electrostatic interaction of a solute with a continuum. A direct utilization of \em ab initio molecular potentials for the prevision of solvent effects. Chem Phys 55:117–129

    Article  Google Scholar 

  15. 15.

    Pascual-Ahuir JL, Silla E, Tuñon I (1994) GEPOL: an improved description of molecular surfaces. III. A new algorithm for the computation of a solvent-excluding surface. J Comput Chem 15(10):1127–1138

    Article  CAS  Google Scholar 

  16. 16.

    Tomasi J, Mennucci B, Cammi R (2005) Quantum mechanical continuum solvation models. Chem Rev 105(8):2999–3093

    Article  CAS  PubMed  Google Scholar 

  17. 17.

    Schäfer A, Horn H, Ahlrichs R (1992) Fully optimized contracted Gaussian basis sets for atoms Li to Kr. J Chem Phys 97(4):2571–2577

    Article  Google Scholar 

  18. 18.

    Schäfer A, Huber C, Ahlrichs R (1994) Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr. J Chem Phys 100(8):5829–5835

    Article  Google Scholar 

  19. 19.

    Lu T, Chen F (2011) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33(5):580–592

    Article  CAS  PubMed  Google Scholar 

  20. 20.

    Guido CA, Cortona P, Mennucci B, Adamo C (2013) On the metric of charge transfer molecular excitations: a simple chemical descriptor. J Chem Theor Comput 9(7):3118–3126

    Article  CAS  Google Scholar 

  21. 21.

    Minioti KS, Sakellariou CF, Thomaidis NS (2007) Determination of 13 synthetic food colorants in water-soluble foods by reversed-phase high-performance liquid chromatography coupled with diode-array detector. Anal Chim Acta 583(1):103–110.

    Article  CAS  PubMed  Google Scholar 

  22. 22.

    FAO/WHO (2018) Codex alimentarius: food additive details, Brilliant Blue FCF (133). Accessed 20 Dec 2018

  23. 23.

    EFSA Panel on Food Additives and Nutrient Sources added to Food (2010) Scientific opinion on the reevaluation of Brilliant Blue FCF (E 133) as a food additive. EFSA J 8(11):1853.

    Article  CAS  Google Scholar 

Download references


The authors are grateful to C. Claparols for providing the HPLC column used for this study and to V. Antérieu for her science of wine tasting. E Jamin and L. Debrauwer are acknowledged for providing access to the HPLC/MS Orbitrap facility (MetaToul-AXIOM, INRA, UMR1331 Toxalim, Toulouse, France, MetaboHUB-ANR-11-INBS-0010).

Author information



Corresponding authors

Correspondence to C. Galaup or F. Collin.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Compliance with ethics requirements

This article does not contain any studies with human or animal subjects.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 304 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Galaup, C., Auriel, L., Dubs, J. et al. Blue wine, a color obtained with synthetic blue dye addition: two case studies. Eur Food Res Technol 245, 1777–1782 (2019).

Download citation


  • Blue wine
  • Brilliant Blue FCF
  • LC-UV
  • UV spectroscopy