Skip to main content
Log in

Influence of mechanical and thermal treatment on particle structure, leaching of alcohol insoluble substances and water binding properties of pectin-rich orange fibre

  • OriginalPaper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Mechanical and thermal processings may affect the composition and the techno-functional properties of dietary fibre as a part of a complex food system. The aim of this study was to investigate the impact of a mechanical and thermal treatment alone or in combination on alcohol insoluble substance (AIS), the content of galacturonic acid (GalA), the water retention capacity (WRC) and the microstructure by scanning electron microscopy (SEM). Two samples of orange fibre with different particle size (coarse and fine) were investigated in an experimental design and evaluated with regard to particle size (d50) after treatment and their impact on network formation. Our study highlights a more pronounced susceptibility of the coarse fibre towards mechanical stress compared to the fine fibre with regard to particle size reduction. High-pressure homogenization (HPH) represents the crucial step regarding AIS release and the increase of WRC for both fibres. A mechanical treatment with additional thermal treatment maximises AIS release. GalA, as a marker for pectin in AIS, was detected in various amounts depending on the intensity of the treatment. Highest values for WRC were achieved for the coarse fibre as a consequence of both, particle size reduction and the formation of a stable network on a microstructural level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Boeing H, Bechthold A, Bub A, Ellinger S, Haller D, Kroke A, Leschik-Bonnet E, Muller MJ, Oberritter H, Schulze M, Stehle P, Watzl B, Müller MJ, Oberritter H, Schulze M, Stehle P, Watzl B (2012) Critical review: vegetables and fruit in the prevention of chronic diseases. Eur J Nutr 51:637–663. https://doi.org/10.1007/s00394-012-0380-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Brownlee I, Chater P, Pearson J, Wilcox M (2017) Dietary fibre and weight loss: where are we now? Food Hydrocoll 68:186–191. https://doi.org/10.1016/j.foodhyd.2016.08.029

    Article  CAS  Google Scholar 

  3. Grigelmo-Miguel N, Martín-Belloso O (1999) Influence of fruit dietary fibre addition on physical and sensorial properties of strawberry jams. J Food Eng 41:13–21. https://doi.org/10.1016/S0260-8774(99)00067-9

    Article  Google Scholar 

  4. de Moraes Crizel T, Jablonski A, de Oliveira Rios A, Rech R, Flôres SH (2013) Dietary fiber from orange byproducts as a potential fat replacer. LWT Food Sci Technol 53:9–14. https://doi.org/10.1016/j.lwt.2013.02.002

    Article  CAS  Google Scholar 

  5. do Espírito Santo A, Perego P, Converti A, Oliveira M (2012) Influence of milk type and addition of passion fruit peel powder on fermentation kinetics, texture profile and bacterial viability in probiotic yoghurts. LWT Food Sci Technol 47:393–399. https://doi.org/10.1016/j.lwt.2012.01.038

    Article  CAS  Google Scholar 

  6. Robertson J, De Monredon F, Dysseler P, Guillon F, Amadò R, Thibault J (2000) Hydration properties of dietary fibre and resistant starch: a European collaborative study. LWT Food Sci Technol 33:72–79. https://doi.org/10.1006/fstl.1999.0595

    Article  CAS  Google Scholar 

  7. Elleuch M, Bedigian D, Roiseux O, Besbes S, Blecker C, Attia H (2011) Dietary fibre and fibre-rich by-products of food processing: characterisation, technological functionality and commercial applications: a review. Food Chem 124:411–421. https://doi.org/10.1016/j.foodchem.2010.06.077

    Article  CAS  Google Scholar 

  8. Tejada-Ortigoza V, Garcia-Amezquita L, Serna-Saldívar S, Welti-Chanes J (2016) Advances in the functional characterization and extraction processes of dietary fiber. Food Eng Rev 8:251–271. https://doi.org/10.1007/s12393-015-9134-y

    Article  CAS  Google Scholar 

  9. Waldron K, Parker M, Smith A (2003) Plant cell walls and food quality. Compr Rev Food Sci Food Saf 2:128–146. https://doi.org/10.1111/j.1541-4337.2003.tb00019.x

    Article  Google Scholar 

  10. Rosell CM, Santos E, Collar C (2009) Physico-chemical properties of commercial fibres from different sources: a comparative approach. Food Res Int 42:176–184. https://doi.org/10.1016/j.foodres.2008.10.003

    Article  CAS  Google Scholar 

  11. Moelants K, Cardinaels R, Van Buggenhout S, Van Loey A, Moldenaers P, Hendrickx M (2014) A review on the relationships between processing, food structure, and rheological properties of plant-tissue-based food suspensions. Compr Rev Food Sci Food Saf 13:241–260. https://doi.org/10.1111/1541-4337.12059

    Article  CAS  Google Scholar 

  12. Schalow S, Baloufaud M, Cottancin T, Fischer J, Drusch S (2018) Orange pulp and peel fibres: pectin-rich by-products from citrus processing for water binding and gelling in foods. Eur Food Res Technol 244:235–244. https://doi.org/10.1007/s00217-017-2950-y

    Article  CAS  Google Scholar 

  13. Abid M, Yaich H, Hidouri H, Attia H, Ayadi M (2018) Effect of substituted gelling agents from pomegranate peel on colour, textural and sensory properties of pomegranate jam. Food Chem 239:1047–1054. https://doi.org/10.1016/j.foodchem.2017.07.006

    Article  CAS  PubMed  Google Scholar 

  14. Abid M, Cheikhrouhou S, Cuvelier G, Leverrier C, Renard C, Attia H, Ayadi M (2017) Rheological properties of pomegranate peel suspensions: the effect of fibrous material and low-methoxyl pectin at acidic pH. Food Hydrocoll 62:174–181. https://doi.org/10.1016/j.foodhyd.2016.08.008

    Article  CAS  Google Scholar 

  15. Foster T (2011) Natural structuring with cell wall materials. Food Hydrocoll 25:1828–1832. https://doi.org/10.1016/j.foodhyd.2011.05.016

    Article  CAS  Google Scholar 

  16. Lopez-Sanchez P, Svelander C, Bialek L, Schumm S, Langton M (2011) Rheology and microstructure of carrot and tomato emulsions as a result of high-pressure homogenization conditions. J Food Sci 76:130–140. https://doi.org/10.1111/j.1750-3841.2010.01894.x

    Article  CAS  Google Scholar 

  17. Christiaens S, Van Buggenhout S, Chaula D, Moelants K, David C, Hofkens J, Van Loey A, Hendrickx M (2012) In situ pectin engineering as a tool to tailor the consistency and syneresis of carrot purée. Food Chem 133:146–155. https://doi.org/10.1016/j.foodchem.2012.01.009

    Article  CAS  Google Scholar 

  18. Benítez V, Mollá E, Martín-Cabrejas M, Aguilera Y, López-Andréu F, Esteban R (2011) Effect of sterilisation on dietary fibre and physicochemical properties of onion by-products. Food Chem 127:501–507. https://doi.org/10.1016/j.foodchem.2011.01.031

    Article  CAS  PubMed  Google Scholar 

  19. Willemsen K, Panozzo A, Moelants K, Debon S, Desmet C, Cardinaels R, Moldenaers P, Wallecan J, Hendrickx M (2017) Physico-chemical and viscoelastic properties of high pressure homogenized lemon peel fiber fraction suspensions obtained after sequential pectin extraction. Food Hydrocoll 72:358–371. https://doi.org/10.1016/j.foodhyd.2017.06.020

    Article  CAS  Google Scholar 

  20. Hua X, Xu S, Wang M, Chen Y, Yang H, Yang R (2017) Effects of high-speed homogenization and high-pressure homogenization on structure of tomato residue fibers. Food Chem 232:443–449. https://doi.org/10.1016/j.foodchem.2017.04.003

    Article  CAS  PubMed  Google Scholar 

  21. Lopez-Sanchez P, Nijsse J, Blonk H, Bialek L, Schumm S, Langton M (2011) Effect of mechanical and thermal treatments on the microstructure and rheological properties of carrot, broccoli and tomato dispersions. J Sci Food Agric 91:207–217. https://doi.org/10.1002/jsfa.4168

    Article  CAS  PubMed  Google Scholar 

  22. Van Buggenhout S, Wallecan J, Christiaens S, Debon S, Desmet C, Van Loey A, Hendrickx M, Mazoyer J (2015) Influence of high-pressure homogenization on functional properties of orange pulp. Innov Food Sci Emerg Technol 30:51–60. https://doi.org/10.1016/j.ifset.2015.05.004

    Article  CAS  Google Scholar 

  23. Day L, Xu M, Øiseth S, Lundin L, Hemar Y (2010) Dynamic rheological properties of plant cell-wall particle dispersions. Colloids Surf B Biointerfaces 81:461–467. https://doi.org/10.1016/j.colsurfb.2010.07.041

    Article  CAS  PubMed  Google Scholar 

  24. Bickford R, Valverde C, Specialist A, Emirates UA, Arabia S (2017) EU-28 Citrus Semi-annual, 1–26

  25. Sharma K, Mahato N, Cho M, Lee Y (2017) Converting citrus wastes into value-added products: economic and environmentally friendly approaches. Nutrition 34:29–46. https://doi.org/10.1016/j.nut.2016.09.006

    Article  CAS  PubMed  Google Scholar 

  26. Fernández-López J, Sendra-Nadal E, Navarro C, Sayas E, Viuda-Martos M, Alvarez J (2009) Storage stability of a high dietary fibre powder from orange by-products. Int J Food Sci Technol 44:748–756. https://doi.org/10.1111/j.1365-2621.2008.01892.x

    Article  CAS  Google Scholar 

  27. Haque A, Richardson R, Morris E (2001) Effect of fermentation temperature on the rheology of set and stirred yogurt. Food Hydrocoll 15:593–602. https://doi.org/10.1016/S0268-005X(01)00090-X

    Article  CAS  Google Scholar 

  28. Prakash Maran J, Sivakumar V, Thirugnanasambandham K, Sridhar R (2013) Optimization of microwave assisted extraction of pectin from orange peel. Carbohydr Polym 97:703–709. https://doi.org/10.1016/j.carbpol.2013.05.052

    Article  CAS  PubMed  Google Scholar 

  29. Blumenkrantz N, Asboe-Hansen G (1973) New method for quantitative determination of uronic acids. Anal Biochem 54:484–489. https://doi.org/10.1016/0003-2697(73)90377-1

    Article  CAS  PubMed  Google Scholar 

  30. Atiemo-Obeng VA, Calabrese RV (2004) Rotor–stator mixing devices. In: Edward L, Atiemo-Obeng VA, Kresta S (eds) Handbook of industrial mixing: science and practice. Wiley, New York, pp 478–505. https://doi.org/10.1002/0471451452

    Chapter  Google Scholar 

  31. Müller S, Kunzek H (1998) Material properties of processed fruit and vegetables I. Effect of extraction and thermal treatment on apple parenchyma. Z Leb Unters Forsch A 206:264–272

    Article  Google Scholar 

  32. Pickardt C, Dongowski G, Kunzek H (2004) The influence of mechanical and enzymatic disintegration of carrots on the structure and properties of cell wall materials. Eur Food Res Technol 219:229–239. https://doi.org/10.1007/s00217-004-0960-z

    Article  CAS  Google Scholar 

  33. Moelants K, Cardinaels R, Jolie R, Verrijssen T, Van Buggenhout S, Zumalacarregui L, Van Loey A, Moldenaers P, Hendrickx M (2013) Relation between particle properties and rheological characteristics of carrot-derived suspensions. Food Bioprocess Technol 6:1127–1143. https://doi.org/10.1007/s11947-011-0718-0

    Article  CAS  Google Scholar 

  34. de Mello Andrade JM, de Jong EV, Henriques AT (2014) Byproducts of orange extraction: influence of different treatments in fiber composition and physical and chemical parameters. Braz J Pharm Sci 50:473–482. https://doi.org/10.1590/S1984-82502014000300005

    Article  CAS  Google Scholar 

  35. Ma M, Mu T (2016) Modification of deoiled cumin dietary fiber with laccase and cellulase under high hydrostatic pressure. Carbohydr Polym 136:87–94. https://doi.org/10.1016/j.carbpol.2015.09.030

    Article  CAS  PubMed  Google Scholar 

  36. Redgwell R, Curti D, Gehin-Delval C (2008) Physicochemical properties of cell wall materials from apple, kiwifruit and tomato. Eur Food Res Technol 227:607–618. https://doi.org/10.1007/s00217-007-0762-1

    Article  CAS  Google Scholar 

  37. Caffall K, Mohnen D (2009) The structure, function, and biosynthesis of plant cell wall pectic polysaccharides. Carbohydr Res 344:1879–1900. https://doi.org/10.1016/j.carres.2009.05.021

    Article  CAS  PubMed  Google Scholar 

  38. Rolin C (2002) Commercial pectin preparations. In: Seymour GB, Knox JP (eds) Pectins and their manipulation. CRC Press/Blackwell, London, pp 222–241. https://doi.org/10.1039/b212315k

    Chapter  Google Scholar 

  39. Pasandide B, Khodaiyan F, Mousavi Z, Hosseini S (2017) Optimization of aqueous pectin extraction from Citrus medica peel. Carbohydr Polym 178:27–33. https://doi.org/10.1016/j.carbpol.2017.08.098

    Article  CAS  PubMed  Google Scholar 

  40. Yapo B, Lerouge P, Thibault J, Ralet M (2007) Pectins from citrus peel cell walls contain homogalacturonans homogenous with respect to molar mass, rhamnogalacturonan I and rhamnogalacturonan II. Carbohydr Polym 69:426–435. https://doi.org/10.1016/j.carbpol.2006.12.024

    Article  CAS  Google Scholar 

  41. Wang W, Ma X, Jiang P, Hu L, Zhi Z, Chen J, Ding T, Ye X, Liu D (2016) Characterization of pectin from grapefruit peel: a comparison of ultrasound-assisted and conventional heating extractions. Food Hydrocoll 61:730–739. https://doi.org/10.1016/j.foodhyd.2016.06.019

    Article  CAS  Google Scholar 

  42. Guo X, Zhao W, Liao X, Hu X, Wu J, Wang X (2017) Extraction of pectin from the peels of pomelo by high-speed shearing homogenization and its characteristics. LWT Food Sci Technol 79:640–646. https://doi.org/10.1016/j.lwt.2016.12.001

    Article  CAS  Google Scholar 

  43. Santiago J, Kyomugasho C, Maheshwari S, Jamsazzadeh Kermani Z, Van de Walle D, Van Loey A, Dewettinck K, Hendrickx M (2018) Unravelling the structure of serum pectin originating from thermally and mechanically processed carrot-based suspensions. Food Hydrocoll 77:482–493. https://doi.org/10.1016/j.foodhyd.2017.10.026

    Article  CAS  Google Scholar 

  44. Colin-Henrion M, Mehinagic E, Renard C, Richomme P, Jourjon F (2009) From apple to applesauce: processing effects on dietary fibres and cell wall polysaccharides. Food Chem 117:254–260. https://doi.org/10.1016/j.foodchem.2009.03.109

    Article  CAS  Google Scholar 

  45. Debon S, Wallecan J, Mazoyer J (2012) A rapid rheological method for the assessment of the high pressure homogenization of citrus pulp fibres. Appl Rheol 22:1–11. https://doi.org/10.3933/ApplRheol-22-63919

    Article  CAS  Google Scholar 

  46. Cadden A (1987) Comparative effects of particle size reduction on physical structure and water binding properties of several plant fibers. J Food Sci 52:1595–1599. https://doi.org/10.1111/j.1365-2621.1987.tb05886.x

    Article  Google Scholar 

  47. Wallecan J, McCrae C, Debon S, Dong J, Mazoyer J (2015) Emulsifying and stabilizing properties of functionalized orange pulp fibers. Food Hydrocoll 47:32–37. https://doi.org/10.1016/j.foodhyd.2015.01.009

    Article  CAS  Google Scholar 

  48. Sangnark A, Noomhorm A (2003) Effect of particle sizes on functional properties of dietary fibre prepared from sugarcane bagasse. Food Chem 80:221–229. https://doi.org/10.1016/s0308-8146(02)00257-1

    Article  CAS  Google Scholar 

  49. Idrovo Encalada A, Basanta M, Fissore E, De’Nobili M, Rojas A (2016) Carrot fiber (CF) composite films for antioxidant preservation: particle size effect. Carbohydr Polym 136:1041–1051. https://doi.org/10.1016/j.carbpol.2015.09.109

    Article  CAS  PubMed  Google Scholar 

  50. Ulbrich M, Flöter E (2014) Impact of high pressure homogenization modification of a cellulose based fiber product on water binding properties. Food Hydrocoll 41:281–289. https://doi.org/10.1016/j.foodhyd.2014.04.020

    Article  CAS  Google Scholar 

  51. Caprez A, Arrigoni E, Amadò R, Neukom H (1986) Influence of different types of thermal treatment on the chemical composition and physical properties of wheat bran. J Cereal Sci 4:233–239. https://doi.org/10.1016/S0733-5210(86)80025-X

    Article  Google Scholar 

  52. Vetter S (2003) Aspekte der Wasserwechselwirkungen in dispersen Obst- und Gemüse-Modellsystemen, Diss. Technische Universität, Berlin. https://doi.org/10.14279/depositonce-638. http://opus4.kobv.de/opus4-tuberlin/frontdoor/index/index/docId/545

  53. BeMiller J, Kumari G (1972) beta-elimination in uronic acids: evidence for an ElcB mechanism. Carbohydr Res 25:419–428. https://doi.org/10.1016/S0008-6215(00)81653-5

    Article  CAS  Google Scholar 

  54. Ormerod A, Ralfs J, Jackson R, Milne J, Gidley M (2004) The influence of tissue porosity on the material properties of model plant tissues. J Mater Sci 39:529–538. https://doi.org/10.1023/B:JMSC.0000011508.02563.93

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the cooperation with the working group of Cornelia Rauh and Christoph Fahrenson (both TU Berlin) for lyophilising samples and for conducting SEM measurements, respectively. Kenneth Kieserling gratefully acknowledges the PhD scholarship from the Friedrich-Naumann Foundation for Freedom.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth Kieserling.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Compliance with ethics requirements

This article does not contain any studies with human or animal subjects.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kieserling, K., Meyer, L., Drusch, S. et al. Influence of mechanical and thermal treatment on particle structure, leaching of alcohol insoluble substances and water binding properties of pectin-rich orange fibre. Eur Food Res Technol 245, 1251–1262 (2019). https://doi.org/10.1007/s00217-019-03249-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-019-03249-5

Keywords

Navigation