Skip to main content
Log in

Borage, calendula, cosmos, Johnny Jump up, and pansy flowers: volatiles, bioactive compounds, and sensory perception

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

The aim of the present work was to study the main volatile and bioactive compounds (monomeric anthocyanins, hydrolysable tannins, total flavonoids, and total reducing capacity) of five edible flowers: borage (Borage officinalis), calendula (Calendula arvensis), cosmos (Cosmos bipinnatus), Johnny Jump up (Viola tricolor), and pansies (Viola × wittrockiana), together with their sensory attributes. The sensory analysis (10 panelists) indicated different floral, fruity, and herbal odors and taste. From a total of 117 volatile compounds (SPME–GC–MS), esters were most abundant in borage, sesquiterpenes in calendula, and terpenes in cosmos, Johnny Jump up, and pansies. Some bioactive and volatile compounds influence the sensory perception. For example, the highest content of total monomeric anthocyanins (cosmos and pansies) was associated with the highest scores of colors intensity, while the floral and green fragrances detected in borage may be due to the presence of ethyl octanoate and 1-hexanol. Therefore, the presence of some volatiles and bioactive compounds affects the sensory perception of the flowers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ye Q (2013) Characterization of volatile constituents of Magnolia denudata Desr flowers by gas chromatography-mass spectrometry with headspace solid-phase microextraction. Chem Asian J 25:6199–6202

    Article  Google Scholar 

  2. Deng C, Song G, Hu Y (2004) Rapid determination of volatile compounds emitted from Chimonanthus praecox flowers by HS-SPME-GC-MS. Z. Naturforsch B Chem Sci 59:636–640

    Article  CAS  Google Scholar 

  3. Fernando LN, Grun IU (2001) Headspace–SPME analysis of volatiles of the ridge gourd (Luffa acutangula) and bitter gourd (Momordica charantia) flowers. ‎Flavour Fragr J 16:289–293

    Article  CAS  Google Scholar 

  4. Movafeghi A, Djozan D, Torbati S (2010) Solid-phase microextraction of volatile organic compounds released from leaves and flowers of Artemisia fragrans, followed by GC and GC/MS analysis. Nat Prod Res 24:1235–1242

    Article  CAS  PubMed  Google Scholar 

  5. Rout PK, Rao YR, Naik S (2012) Analysis of floral volatiles by using headspace-solid phase microextraction: a review. Chem Asian J 24:945–956

    CAS  Google Scholar 

  6. Mazza G, Cottrell T (1999) Volatile components of roots, stems, leaves, and flowers of Echinacea Species. J Agric Food Chem 47:3081–3085

    Article  CAS  PubMed  Google Scholar 

  7. Oliveira LL, Carvalho MV, Melo L (2014) Health promoting and sensory properties of phenolic compounds in food. Rev Ceres 61:764–779

    Article  Google Scholar 

  8. Almeida V, Gonçalves V, Galego L, Miguel G, Costa M (2006) Volatile constituents of leaves and flowers of Thymus mastichina by headspace solid-phase microextraction. Acta Hort 723:239–242

    Article  CAS  Google Scholar 

  9. Li A-N, Li S, Li H-B, Xu D-P, Xu X-R, Chen F (2014) Total phenolic contents and antioxidant capacities. J Funct Foods 6:319–330

    Article  CAS  Google Scholar 

  10. Fernandes L, Casal S, Pereira JA, Ramalhosa E, Saraiva J (2017) Optimization of high pressure bioactive compounds extraction from pansies (Viola × wittrockiana) by response surface methodology. High Pressure Res 37:415–425

    Article  CAS  Google Scholar 

  11. Nieuwenhuizen NJ, Green S, Atkinson RG (2010) Floral sesquiterpenes and their synthesis in dioecious kiwifruit. Plant Signal Behav 5:61–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Flamini G, Cioni PL, Morelli I (2003) Use of solid-phase micro-extraction as a sampling technique in the determination of volatiles emitted by flowers, isolated flower parts and pollen. J Chromatogr A 998:229–233

    Article  CAS  PubMed  Google Scholar 

  13. Yuan C, Lu Z, Jin Z (2014) Characterization of an inclusion complex of ethyl benzoate with hydroxypropyl-β-cyclodextrin. Food Chem 152:140–145

    Article  CAS  PubMed  Google Scholar 

  14. Malheiro R, Pinho PG, Casal S, Bento A, Pereira JA (2011) Determination of the volatile profile of stoned table olives from different varieties by using HS-SPME and GC/IT-MS. J Sci Food Agric 91:1693–1701

    Article  CAS  PubMed  Google Scholar 

  15. Cossé AA, Baker TC (1999) Electrophysiologically and behaviorally active volatiles of buffalo gourd root powder for corn rootworm beetles. J Chem Ecol 25:51–66

    Article  Google Scholar 

  16. Nuttley WM, Harbinder S, Kooy DV (2001) Regulation of distinct attractive and aversive mechanisms mediating benzaldehyde chemotaxis in caenorhabditis elegans. Learn Mem 8:170–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Syed Z, Leal WS (2009) Acute olfactory response of Culex mosquitoes to a human- and bird-derived attractant. Proc Natl Acad Sci USA 106:18803–18808

    Article  PubMed  Google Scholar 

  18. Cremer D, Eichner K (2000) Formation of volatile compounds during heating of spice paprika (Capsicum annuum) powder. J Agric Food Chem 48:2454–2460

    Article  CAS  PubMed  Google Scholar 

  19. Benvenuti S, Bortolotti E, Maggini R (2016) Antioxidant power, anthocyanin content and organoleptic performance of edible flowers. Sci Hortic 199:170–177

    Article  CAS  Google Scholar 

  20. Ferrer-Gallego R, Hernández-Hierro JM, Rivas-Gonzalo JC, Escribano-Bailón MT (2014) Sensory evaluation of bitterness and astringency sub-qualities of wine phenolic compounds: synergistic effect and modulation by aromas. Food Res Int 62:1100–1107

    Article  CAS  Google Scholar 

  21. Drewnowski A, Gomez-Carneros C (2000) Bitter taste, phytonutrients, and the consumer: a review. Am J Clin Nutr 72:1424–1435

    Article  CAS  PubMed  Google Scholar 

  22. Ares G, Barreiro C, Deliza R, Gámbaro A (2009) Alternatives to reduce the bitterness, astringency and characteristic flavour of antioxidant extracts. Food Res Int 42:871–878

    Article  CAS  Google Scholar 

  23. Golner MC, Zamora MC, Paola LD, Gianninoto H, Bandoni A (2009) Effect of ethanol levels in the perception of the aroma attributes and the detection of volatiles compounds in red wine. J Sens Stud 24:243–257

    Article  Google Scholar 

  24. Kaack K, Christensen LP, Hughes M, Eder R (2006) Relationship between sensory quality and volatile compounds of elderflower (Sambucus nigra L.) extracts. Eur Food Res Technol 223:57–70

    Article  CAS  Google Scholar 

  25. García-González DL, Tena N, Aparicio-Ruiz R, Morales MT (2008) Relationship between sensory attributes and volatile compounds qualifying dry-cured hams. Meat Sci 80:315–325

    Article  CAS  PubMed  Google Scholar 

  26. Steinhaus M, Wilhelm W, Schieberle P (2007) Comparison of the most odour-active volatiles in different hop varieties by application of a comparative aroma extract dilution analysis. Eur Food Res Technol 226:45–55

    Article  CAS  Google Scholar 

  27. Niu L, Bao J, Zhao L, Zhang Y (2011) Odor properties and volatile compounds analysis of Torreya grandis aril extracts. J Essential Oil Res 23:1–6

    Article  CAS  Google Scholar 

  28. Kalua CM, Allen MS, Bedgood DR Jr, Bishop AG, Prenzler PD, Robards K (2007) Olive oil volatile compounds, flavour development and quality: a critical review. Food Chem 100:273–286

    Article  CAS  Google Scholar 

  29. Acree T, Arn H (2003) Flavornet. http://www.flavornetorg/indexhtml. Acessed 18th Dec 2017

  30. Śliwińska M, Wiśniewska P, Dymerski T, Wardencki W, Namieśnik J (2017) Authenticity assessment of the “Onisiówka” nalewka liqueurs using two-dimensional gas chromatography and sensory evaluation. Food Anal Method 10:1709–1720

    Article  Google Scholar 

  31. Dudareva N, Martin D, Kish CM, Kolosova N, Gorenstein N, Fäldt J, Miller B, Bohlmann J (2003) (E)-β-Ocimene and myrcene synthase genes of floral scent biosynthesis in snapdragon: function and expression of three terpene synthase genes of a new terpene synthase subfamily. Plant Cell 15:1227–1241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Shade F, Legge RL, Thompson JE (2001) Fragrance volatiles of developing and senescing carnation flowers. Phytochemistry 56:703–710

    Article  Google Scholar 

  33. Kong Y, Sun M, Pan H-T, Zhang Q-x (2012) Composition and emission rhythm of floral scent volatiles from eight lily cut flowers. J Am Soc Hortic Sci 137:376–382

    Article  CAS  Google Scholar 

  34. Schiestl FP (2010) The evolution of floral scent and insect chemical communication. Ecol Lett 13:643–656

    Article  PubMed  Google Scholar 

  35. Héthelyi ÉB, Szarka S, Lemberkovics É, Szoke É (2010) SPME-GC/MS identification of aroma compounds in rose flowers. Acta Agro Hung 58:283–287

    Article  CAS  Google Scholar 

  36. Koksall N, Aslancan H, Sadighazadi S, Kafkas E (2015) Chemical investigation on Rose damascena Mill volatiles; Effects of storage and drying conditions. Acta Sci Pol Technol Aliment 14:105–114

    Google Scholar 

  37. Zhang F-P, Yang Q-Y, Wang G, Zhang S-B (2016) Multiple functions of volatiles in flowers and leaves of Elsholtzia rugulosa (Lamiaceae) from southwestern China. Sci Rep 6:1–6

    Article  CAS  Google Scholar 

  38. Adams RP (2007) Identification of essential oil components by gas-chromatography/mass spectrometry, 4th edn. Allured Business Media, Illinois

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Portuguese Foundation for Science and Technology (FCT, Portugal) for the financial support provided by the research grant [SFRH/BD/95853/2013] and FCT/MEC for the financial support to QOPNA research Unit [FCT UID/QUI/00062/2013], through national funds and when applicable co-financed by the FEDER, within the PT2020 Partnership Agreement, and to REQUIMTE through the Project [PEst/UID/QUI/50006/2013]. The authors are also grateful to FCT (Portugal) and FEDER under Programme PT2020 for financial support to CIMO (UID/AGR/00690/2013).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Susana Casal or Elsa Ramalhosa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Compliance with ethics requirements

This article does not contain any studies with human or animal subjects.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernandes, L., Casal, S., Pereira, J.A. et al. Borage, calendula, cosmos, Johnny Jump up, and pansy flowers: volatiles, bioactive compounds, and sensory perception. Eur Food Res Technol 245, 593–606 (2019). https://doi.org/10.1007/s00217-018-3183-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-018-3183-4

Keywords

Navigation