Chemical, functional and thermal characterization, and fatty acid profile of the edible grasshopper (Sphenarium purpurascens Ch.)

Abstract

The aim of this research was to evaluate the chemical composition, functional and thermal properties, and fatty acid profile of the grasshopper (Sphenarium purpurascens Ch.), as well as the effect of temperature (60, 70, 80 and 90 °C) on some functional properties. Grasshopper meal (GM) had an L* = 47.65 and an intense red-brown color (# 896a5c), a high protein content (53.57 g/100 g) and an energy value of 414.98 kcal/100 g. The GM presented a foaming capacity of 6.17%, a foam stability of 7.13 min, and a gelification capacity of 14%. The temperature showed no significant effect (p > 0.05) on the water absorption capacity (1.75 g/g), while the increase in temperature decreased (p < 0.05) the water solubility capacity [17.13% (60 °C)–12.33% (90 °C)], the oil absorption capacity [2.79 g/g (60 °C)–2.16 g/g (90 °C)] and the emulsifying capacity [20.33% (60 °C)–18.5% (90 °C)]. The GM showed only a thermal transition at a temperature of 131.01–163.07 °C with a transition energy of 5059 J/g. Grasshopper oil presented a high content of polyunsaturated fatty acids, predominated by gamma linolenic acid, which was followed by linoleic acid. The information generated in this research could be used for further studies on grasshoppers and for the development of new food products.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. 1.

    Cuj-Laines R, Hernández-Santos B, Reyes-Jaquez D et al (2018) Physicochemical properties of ready-to-eat extruded nixtamalized maize-based snacks enriched with grasshopper. Int J Food Sci Technol 53(8):1889–1895

    CAS  Article  Google Scholar 

  2. 2.

    Miranda-Román G, Quintero-Salazar B, Ramos-Rostro B et al (2011) La recolección de insectos con fines alimenticios en la zona turística de Otumba y Teotihuacán, Estado de México. Revista de Turismo y Patrimonio Cultural 9(1):81–100

    Article  Google Scholar 

  3. 3.

    Zhou J, Han D (2006) Proximate, amino acid and mineral composition of pupae of the silkworm Antheraea pernyi in China. J Food Compos Anal 19:850–853

    CAS  Article  Google Scholar 

  4. 4.

    Cerritos R, Cano-Santana Z (2008) Harvesting grasshoppers Sphenarium purpurascens in Mexico for human consumption: a comparison with insecticidal control for managing pest outbreaks. Crop Prot 27(3):473–480

    Article  Google Scholar 

  5. 5.

    Rodríguez-Miranda J, Hernández-Santos B, Herman-Lara E et al (2012) Physicochemical and functional properties of whole and defatted meals from Mexican (Cucurbita pepo) pumpkin seeds. Int J Food Sci Technol 47(11):2297–2303

    Article  CAS  Google Scholar 

  6. 6.

    Zielińska E, Karaś M, Baraniak B (2018) Comparison of functional properties of edible insects and protein preparations thereof. LWT Food Sci Technol 91:168–174

    Article  CAS  Google Scholar 

  7. 7.

    Purschke B, Meinlschmidt P, Horn C et al (2018) Improvement of techno-functional properties of edible insect protein from migratory locust by enzymatic hydrolysis. Eur Food Res Technol 244(6):999–1013

    CAS  Article  Google Scholar 

  8. 8.

    Osasona AI, Olaofe O (2010) Nutritional and functional properties of Cirina forda larva from Ado-Ekiti, Nigeria. Afr J Food Sci 4(12):775–777

    CAS  Google Scholar 

  9. 9.

    Yi L, Lakemond CM, Sagis LM et al (2013) Extraction and characterisation of protein fractions from five insect species. Food chem 141(4):3341–3348

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    Melo V, Garcia M, Sandoval H et al (2011) Quality proteins from edible indigenous insect food of Latin America and Asia. Emir J Food Agric 23(3):283–289

    Google Scholar 

  11. 11.

    Mariod AA, Abdel-Wahab SI, Ain NM (2011) Proximate amino acid, fatty acid and mineral composition of two Sudanese edible pentatomid insects. Int J Trop Insect Sci 31(3):145–153

    Article  Google Scholar 

  12. 12.

    AOAC (2012) In: Horwitz W, Latimer GW (eds) Association of official analytical chemists, official methods of analysis, 18 th edn. AOAC International, Gathersburg

    Google Scholar 

  13. 13.

    Petenuci ME, Stevanato FB, Visentainer JEL et al (2018) Fatty acid concentration, proximate composition, and mineral composition in fishbone flour of Nile Tilapia. Arch Latinoam Nutrición 58(1):87–90

    Google Scholar 

  14. 14.

    Rodríguez-Miranda J, Rivadeneyra-Rodríguez JM, Ramírez-Rivera J et al (2011) Caracterización fisicoquímica, funcional y contenido fenólico de harina de malanga (Colocasia esculenta) cultivada en la región de Tuxtepec, Oaxaca, México. Ciencia y Mar 15(43):37–47

    Google Scholar 

  15. 15.

    Beuchat L (1977) Functional and electrophoretic characteristics of succinylated peanut flour proteins. J Agric Food Chem 25:258–263

    CAS  Article  Google Scholar 

  16. 16.

    Sathe SK, Deshpande SS, Salunkhe DK (1982) Functional properties of lupin seed (Lupinus mutabilis) proteins and protein concentrates. J Food Sci 47(2):491–497

    CAS  Article  Google Scholar 

  17. 17.

    Bencini M (1986) Functional properties of drum-dried chickpea (Cicer arietinum L.) flours. J Food Sci 51:1518–1526

    Article  Google Scholar 

  18. 18.

    Juárez-Barrientos JM, Hernández-Santos B, Herman-Lara E et al (2017) Effects of boiling on the functional, thermal and compositional properties of the Mexican jackfruit (Artocarpus heterophyllus) seed Jackfruit seed meal properties. Emir J Food Agric 29(1):1–9

    Article  Google Scholar 

  19. 19.

    Martinez CE, Vinay JC, Brieva R et al (2005) Preparation of mono-and diacylglycerols by enzymatic esterification of glycerol with conjugated linoleic acid in hexane. Appl Biochem Biotechnol 125(1):63–75

    CAS  PubMed  Article  Google Scholar 

  20. 20.

    Ndiritu KA, Kinyuru NJ, Kenji MG, Gichuhi NP (2017) Extraction technique influences the physico-chemical characteristics and functional properties of edible crickets (Acheta domesticus) protein concentrate. J Food Meas Charact 11(4):2013–2021

    Article  Google Scholar 

  21. 21.

    Wittkopp PJ, Beldade P (2009) Development and evolution of insect pigmentation: genetic mechanisms and the potential consequences of pleiotropy. Semin Cell Dev Biol 20(1):65–71

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    EasyRGB (2018) The color search engine. Retrieved 10 Jan 2018 http://www.easyrgb.com

  23. 23.

    Amador-Mendoza A, Huerta-Ochoa S, Herman-Lara E et al (2016) Efecto de la purificación química, biológica y física en la recuperación de quitina de exoesqueletos de camarón (Penaeus sp) y chapulín (Sphenarium purpurascens). Rev Mex Ing Quím 15(3):711–725

    CAS  Google Scholar 

  24. 24.

    Norma Oficial Mexicana. NOM-147-SSA1-1996, bienes y servicios. cereales y sus productos. harinas de cereales, sémolas o semolinas. alimentos a base de cereales, de semillas comestibles, harinas, sémolas o semolinas o sus mezclas. productos de panificación. disposiciones y especificaciones sanitarias y nutrimentales

  25. 25.

    Ramos-Elorduy J, González EA, Hernández AR, Pino JM (2002) Use of Tenebrio molitor (Coleoptera: Tenebrionidae) to recycle organic wastes and as feed for broiler chickens. J Econ Entomol 95(1):214–220

    PubMed  Article  Google Scholar 

  26. 26.

    Ramos-Elorduy BJ, Pino-Moreno JM, Martinez-Camacho VH (2012) Could grasshoppers be a nutritive meal? Food Sci Nutr 3(02):164–175

    Google Scholar 

  27. 27.

    Rumpold BA, Schlüter OK (2013) Nutritional composition and safety aspects of edible insects. Mol Nutr Food Res 57(5):802–823

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Melo-Ruiz V, Sandoval-Trujillo H, Quirino-Barreda T et al (2015) Chemical composition and amino acids content of five species of edible Grasshoppers from Mexico. Emir J Food Agric 654–658

  29. 29.

    Wang D, Zhai SW, Zhang CX et al (2007) Nutrition value of the Chinese grasshopper Acrida cinerea (Thunberg) for broilers. Anim Feed Sci Technol 135(1–2):66–74

    CAS  Article  Google Scholar 

  30. 30.

    Nakagaki B, Sunde M, Defoliart G (1987) Protein quality of the house cricket, Acheta domesticus, when fed to broiler chicks. Poult Sci 66:1367–1371

    Article  Google Scholar 

  31. 31.

    Kim HW, Setyabrata D, Lee YJ et al (2016) Pre-treated mealworm larvae and silkworm pupae as a novel protein ingredient in emulsion sausages. Innov Food Sci Emerg Technol 38:116–123

    CAS  Article  Google Scholar 

  32. 32.

    Ramos-Elorduy J (2008) Energy supplied by edible insects from Mexico and their nutritional and ecological importance. Ecol Food Nutr 47(3):280–297

    Article  Google Scholar 

  33. 33.

    Bußler S, Rumpold BA, Jander E et al (2016) Recovery and techno-functionality of flours and proteins from two edible insect species: meal worm (Tenebrio molitor) and black soldier fly (Hermetia illucens) larvae. Heliyon 2(12):1–24

    Article  Google Scholar 

  34. 34.

    Adebowale YA, Adebowale KO, Oguntokun MO (2005) Evaluation of nutritive properties of the large African cricket (Grylladae sp). Pak J Sci Ind Res 48:274–278

    CAS  Google Scholar 

  35. 35.

    Granito M, Guerra M, Torres A, Guinand J (2004) Efecto del procesamiento sobre las propiedades funcionales de Vigna sinensis. Interciencia 29:521–526

    Google Scholar 

  36. 36.

    Sathe SK, Salunkhe DK (1981) Isolation, partial characterization and modification of the Great North bean (Phaseolus vulgaris) starch. J Food Sci 46(4):617–621

    CAS  Article  Google Scholar 

  37. 37.

    Lawal OS (2004) Functionality of africanlocust bean (Parkiabi globossa) protein isolate: effects of pH, ionic strength and various protein concentrations. Food Chem 86:345–355

    CAS  Article  Google Scholar 

  38. 38.

    Chel-Guerrero L, Pérez-Flores V, Betancur-Ancona D, Dávila-Ortiz G (2002) Functional properties of flours and protein isolates from Phaseolus lunatus and Canavalia ensiformis seeds. J Agric Food Chem 50(3):584–591

    CAS  PubMed  Article  Google Scholar 

  39. 39.

    Kim HJ, Decker EA, McClements DJ (2005) Influence of protein concentration and order of addition on thermal stability of β-lactoglobulin stabilized n-hexadecane oil-in-water emulsions at neutral pH. Langmuir 21(1):134–139

    CAS  PubMed  Article  Google Scholar 

  40. 40.

    Akpossan AR, Dogoré DY, Djary KM et al (2015) Protein fractions and functional properties of dried Imbrasia oyemensis larvae full-fat and defatted flours. Int J Biochem Res Rev 5(2):116–126

    CAS  Article  Google Scholar 

  41. 41.

    Karuna D, Noel D, Dilip K (1996) Food and nutrition bulleting, vol 17, no 2. United Nation University, Tokyo

  42. 42.

    Ikpeme ECA, Osuchukwu NC, Oshiele L (2010) Functional and sensory properties of wheat (Aestium triticium) and taro flour (Colocasia esculenta) composite bread. Afr J Food Sci 4(5):248–253

    Google Scholar 

  43. 43.

    Barbosa-Casanovas G, Ortega-Rivas E, Juliano P, Yan H (2005) Food powders: physical properties, processing and functionality. Kluwer Academic/Plenum Publisher, New York, p 372

    Google Scholar 

  44. 44.

    Mariod AA, Abdelwahab SI, Ibrahim MY et al (2011) Preparation and characterization of gelatins from two sudanese edible insects. J Food Eng 1(1):45–55

    CAS  Google Scholar 

  45. 45.

    Paul A, Frederich M, Uyttenbroeck R et al (2016) Grasshoppers as a food source? A review. Biotechnol Agron Soc Environ 20(S1):1–16

    Google Scholar 

  46. 46.

    Sánchez-Muros MJ, Barroso FG, Manzano-Agugliaro F (2014) Insect meal as renewable source of food for animal feeding: a review. J Clean Prod 65:16–27

    Article  CAS  Google Scholar 

  47. 47.

    Raksakantong P, Meeso N, Kubola J et al (2010) Fatty acids and proximate composition of eight Thai edible terricolous insects. Food Res Int 43(1):350–355

    CAS  Article  Google Scholar 

  48. 48.

    Stanley-Samuelson DW, Jurenka RA, Cripps C et al (1988) Fatty acids in insects: composition, metabolism, and biological significance. Arch Insect Biochem Physiol 9(1):1–33

    CAS  Article  Google Scholar 

  49. 49.

    Blomquist GJ, Borgeson CE, Vundla M (1991) Polyunsaturated fatty acids and eicosanoids in insects. Insect Biochem 21(1):99–106

    CAS  Article  Google Scholar 

  50. 50.

    Finke MD, Oonincx D (2014) In: Morales-Ramos JA, Rojas MG, Shapiro-Ilan DI (eds) Mass production of beneficial organisms. Invertebrates and entomopathogens. Academic Press, San Diego

    Google Scholar 

  51. 51.

    Ghioni C, Bell JG, Sargent JR (1996) Polyunsaturated fatty acids in neutral lipids and phospholipids of some freshwater insects. Comp Biochem Physiol B Biochem Mol Biol 114:161–170

    Article  Google Scholar 

  52. 52.

    Haglund O (1998) Effects of fish oil alone and combined with long chain (n–6) fatty acid on some coronary risk factors in male subjects. Nutr Biochem 9:629–635

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jesús Rodríguez-Miranda.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Compliance with ethics requirements

This article does not contain any studies with human or animal subjects.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Torruco-Uco, J.G., Hernández-Santos, B., Herman-Lara, E. et al. Chemical, functional and thermal characterization, and fatty acid profile of the edible grasshopper (Sphenarium purpurascens Ch.). Eur Food Res Technol 245, 285–292 (2019). https://doi.org/10.1007/s00217-018-3160-y

Download citation

Keywords

  • Chapulín
  • Characterization
  • Fatty acids