Skip to main content
Log in

Delta-7-stigmastenol: quantification and isomeric formation during chemical refining of olive pomace oil and optimization of the neutralization step

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Abstract

The aim of this study is to evaluate the formation of the increase of Δ-7-stigmastenol during the chemical refining of pomace olive oil (POO) and the optimal neutralization by NaOH concentration of 20 °Be at a temperature of 70 °C. A comparison has been made between virgin olive oil (VOO) and consecutive steps of refining process in the amounts of Δ-7-stigmastenol of the POO oil samples. Among the oils, refined olive oil particularly the neutralized olive oil (NOO) by soda (NaOH) contained a high-level of Δ-7-stigmastenol. A mean result found in NOO by different concentration of NaOH from 15 to 25 °Be showed increased values significantly (p < 0.05) from 0.70 ± 0.01% to 0.78 ± 0.01% of Δ-7-stigmastenol and increased significantly (p < 0.05) the levels of erythrodiol and uvaol from 26.34 ± 0.39% to 28.11 ± 0.42%. Then, the concentration of the ∆-7-stigmastenol was evaluated using a GC–MS instrument. Besides, further analyses were performed to ensure the uniqueness of the peak of Δ-7-stigmastenol and absence of any overlap. In all cases, the level of Δ-7-stigmastenol was higher than the limit set by the International Olive Council.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

VOO:

Virgin olive oil

POO:

Pomace–olive oil

RPOO:

Refined pomace olive oil

FFA:

Free fatty acids

TFAs:

Trans-fatty acids

GC/MS:

Gas chromatography/mass spectrometry

IOC:

International olive council

NOO:

Neutralization olive oil

References

  1. Cecchi L, Innocenti M, Melani F et al (2017) New isobaric lignans from refined olive oils as quality markers for virgin olive oils. Food Chem 219:148–157. https://doi.org/10.1016/j.foodchem.2016.09.132

    Article  CAS  PubMed  Google Scholar 

  2. Gharbi I, Issaoui M, Mehri S et al (2015) Agronomic and technological factors affecting tunisian olive oil quality. Agric Sci 06:513. https://doi.org/10.4236/as.2015.65051

    Article  Google Scholar 

  3. Jabeur H, Drira M, Rebai A, Bouaziz M (2017) Putative markers of adulteration of higher-grade olive oil with less expensive pomace olive oil by GC combined with chemometrics. J Agric Food Chem 65:5375–5383. https://doi.org/10.1021/acs.jafc.7b00687

    Article  CAS  PubMed  Google Scholar 

  4. Jabeur H, Zribi A, Abdelhedi R, Bouaziz M (2015) Effect of olive storage conditions on Chemlali olive oil quality and the effective role of fatty acids alkyl esters in checking olive oils authenticity. Food Chem 169:289–296. https://doi.org/10.1016/j.foodchem.2014.07.118

    Article  CAS  PubMed  Google Scholar 

  5. Marrakchi F, Kriaa K, Hadrich B, Kechaou N (2015) Experimental investigation of processing parameters and effects of degumming, neutralization and bleaching on lampante virgin olive oil’s quality. Food Bioprod Process 94:124–135. https://doi.org/10.1016/j.fbp.2015.02.002

    Article  CAS  Google Scholar 

  6. Antonopoulos K, Valet N, Spiratos D, Siragakis G (2006) Olive oil and pomace olive oil processing. Grasas Aceites 57:56–67

    CAS  Google Scholar 

  7. Gomes T, Caponio F, Durante V et al (2012) The amounts of oxidized and oligopolymeric triacylglycerols in refined olive oil as a function of crude oil oxidative level. LWT-Food Sci Technol 45:186–190. https://doi.org/10.1016/j.lwt.2011.07.008

    Article  CAS  Google Scholar 

  8. García A, Ruiz-Méndez MV, Romero C, Brenes M (2006) Effect of refining on the phenolic composition of crude olive oils. J Am Oil Chem Soc 83:159–164. https://doi.org/10.1007/s11746-006-1189-8

    Article  Google Scholar 

  9. Aluyor EO, Aluyor P, Ozigagu CE (2009) Effect of refining on the quality and composition of groundnut oil. Afr J Food Sci ACFS 3:201–205

    CAS  Google Scholar 

  10. Ortega-García J, Gámez-Meza N, Noriega-Rodriguez JA et al (2006) Refining of high oleic safflower oil: Effect on the sterols and tocopherols content. Eur Food Res Technol 223:775–779. https://doi.org/10.1007/s00217-006-0267-3

    Article  CAS  Google Scholar 

  11. Krishna AGG, Khatoon S, Shiela PM et al (2001) Effect of refining of crude rice bran oil on the retention of oryzanol in the refined oil. J Am Oil Chem Soc 78:127–131. https://doi.org/10.1007/s11746-001-0232-0

    Article  CAS  Google Scholar 

  12. Hoed VV, Depaemelaere G, Ayala JV et al (2006) Influence of chemical refining on the major and minor components of rice brain oil. J Am Oil Chem Soc 83:315–321. https://doi.org/10.1007/s11746-006-1206-y

    Article  Google Scholar 

  13. Ceci LN, Carelli AA (2007) Characterization of monovarietal argentinian olive oils from new productive zones. J Am Oil Chem Soc 84:1125–1136. https://doi.org/10.1007/s11746-007-1140-7

    Article  CAS  Google Scholar 

  14. Codex Alimentarius Commission, 3rd ed. (2007) Report of the twentieth session of the codex committee on fats and oils. Rome, Italy. http://www.codexalimentarius.net/download/report/.../al30_17e.pdf

  15. Houshia O, Abueid M, Zaid O et al (2014) The Influence of peacock-eye disease and fruit-fly infection on olive oil ∆7 stigmasterol in Northern West Bank. Int J Ecosyst 4:184–189. https://doi.org/10.5923/j.ije.20140404.04

    Article  Google Scholar 

  16. Abu-Alruz K, Afaneh IA, Quasem JM et al (2011) Factors affecting D-7-stigmastenol in palestinian olive oil. J Appl Sci 11:797–805. https://doi.org/10.3923/jas.2011.797.805

    Article  CAS  Google Scholar 

  17. Jamie A, Rodney JM, Anthony H et al (2007) La qualit et la stabilite oxydante de l’huile d’olive australienne en fonction de la date de recolte et de l’irrigation Journal of Food Lipids-Wiley Online Library. http://onlinelibrary.wiley.com/doi/https://doi.org/10.1111/j.1745-4522.2007.00076.x/abstract. Accessed 18 Oct 2017

  18. Pehlivan B, Yılmaz E (2010) Comparison of oils originating from olive fruit by different production systems. J Am Oil Chem Soc 87:865–875. https://doi.org/10.1007/s11746-010-1569-y

    Article  CAS  Google Scholar 

  19. Oueslati I, MANAI DJEBALI H, Faouzia H et al (2009) Sterol, triterpenic dialcohol, and triacylglycerol compounds of extra virgin olive oils from some tunisian varieties grown in the region of Tataouine. Food Sci Technol Int 15:5–13. https://doi.org/10.1177/1082013208101024

    Article  CAS  Google Scholar 

  20. Mailer R, Ayton J, Graham K (2010) The influence of growing region, cultivar and harvest timing on the diversity of Australian olive oil. JAOCS J Am Oil Chem Soc 87:877–884. https://doi.org/10.1007/s11746-010-1608-8

    Article  CAS  Google Scholar 

  21. Temime SB, Manai H, Methenni K et al (2008) Sterolic composition of Chétoui virgin olive oil: Influence of geographical origin. Food Chem 110:368–374. https://doi.org/10.1016/j.foodchem.2008.02.012

    Article  CAS  PubMed  Google Scholar 

  22. Guil-Guerrero JL, Urda-Romacho J (2009) Quality of extra virgin olive oil affected by several packaging variables. Grasas Aceites 60:125–133

    Article  CAS  Google Scholar 

  23. ISO 660 (2009) Animal and vegetable fats and oils, determination of acid value and acidity

  24. International Olive Council, COI/T, 20/ Doc. No. 19 Rev.3. (2010) Spectrophotometric investigation in the ultraviolet

  25. International Olive Council, COI/T, 20/Doc. No. 17 (2001) Determination of trans unsaturated fatty acids by capillary column gas chromatography

  26. International Olive Council, COI/T, 20/Doc. No. 28 (2009) Determination of the content of waxes fatty acid methyl esters and fatty acid ethyl esters by capillary gas chromatography

  27. International Olive Council, COI/T, 20/Doc. No. 30 (2013) Determination of the composition and content of sterols and triterpene dialcohols by capillary column gas chromatography

  28. Pal US, Patra RK, Sahoo NR et al (2015) Effect of refining on quality and composition of sunflower oil. J Food Sci Technol 52:4613–4618. https://doi.org/10.1007/s13197-014-1461-0

    Article  CAS  PubMed  Google Scholar 

  29. Vlahakis C, Hazebroek J (2000) Phytosterol accumulation in canola, sunflower, and soybean oils: Effects of genetics, planting location, and temperature. J Am Oil Chem Soc 77:49–53. https://doi.org/10.1007/s11746-000-0008-6

    Article  CAS  Google Scholar 

  30. Ceriani R, Meirelles AJA (2007) Formation of trans PUFA during deodorization of canola oil: a study through computational simulation. Chem Eng Process 46:375–385

    Article  CAS  Google Scholar 

  31. Pérez-Camino MC, Moreda W, Cert A (2001) Effects of olive fruit quality and oil storage practices on the diacylglycerol content of virgin olive oils. J Agric Food Chem 49:699–704

    Article  Google Scholar 

  32. Carelli AA, Frizzera LM, Forbito PR, Crapiste GH (2002) Wax composition of sunflower seed oils. J Am Oil Chem Soc 79:763–768. https://doi.org/10.1007/s11746-002-0556-9

    Article  CAS  Google Scholar 

  33. Samaniego-Sánchez C, Quesada-Granados JJ, de la Serrana HL-G, López-Martínez MC (2010) β-Carotene, squalene and waxes determined by chromatographic method in picual extra virgin olive oil obtained by a new cold extraction system. J Food Compos Anal 23:671–676. https://doi.org/10.1016/j.jfca.2010.03.010

    Article  CAS  Google Scholar 

  34. Commission Implementing Regulation (EU) No. 1348, 2013 of 16 December (2013) Amending Regulation (EEC) No. 2568/91 on the characteristics of olive oil and olive-residue oil and on the relevant methods of analysis. Off J L 338:31–67

    Google Scholar 

  35. Gómez G, Soledad M (2001) Composición química de distintas calidades de aceites de oliva virgen de la variedad “Empeltre” en el bajo Aragón. Grasas Aceites 52:52–58

    Google Scholar 

  36. Jabeur H, Zribi A, Makni J et al (2014) Detection of Chemlali extra-virgin olive oil adulteration mixed with soybean oil, corn oil, and sunflower oil by using GC and HPLC. J Agric Food Chem 62:4893–4904. https://doi.org/10.1021/jf500571n

    Article  CAS  PubMed  Google Scholar 

  37. Ranalli A, Angerosa F (1996) Integral centrifuges for olive oil extraction. The qualitative characteristics of products. J Am Oil Chem Soc 73:417–422. https://doi.org/10.1007/BF02523912

    Article  CAS  Google Scholar 

  38. Ceci LN, Carelli AA (2007) Characterization of monovarietal Argentinian olive oils from new productive zones. J Am Oil Chem Soc 84:1125–1136. https://doi.org/10.1007/s11746-007-1140-7

    Article  CAS  Google Scholar 

  39. Rodriguez-Rodriguez R, Perona JS, Herrera MD, Ruiz-Gutierrez V (2006) Triterpenic compounds from “Orujo” olive oil elicit vasorelaxation in aorta from spontaneously hypertensive rats. J Agric Food Chem 54:2096–2102. https://doi.org/10.1021/jf0528512

    Article  CAS  PubMed  Google Scholar 

  40. Essid K, Chtourou M, Trabelsi M, Frikha MH (2009) Influence of the neutralization step on the oxidative and thermal stability of acid olive oil. J Oleo Sci 58:339–346

    Article  CAS  Google Scholar 

  41. Chang M, Li D, Wang W et al (2017) Comparison of sodium hydroxide and calcium hydroxide pretreatments on the enzymatic hydrolysis and lignin recovery of sugarcane bagasse. Bioresour Technol 244:1055–1058. https://doi.org/10.1016/j.biortech.2017.08.101

    Article  CAS  PubMed  Google Scholar 

  42. Kozyuk O, Reimers P (2017) Method for degumming vegetable oil. US 9,845,442

Download references

Acknowledgements

The authors would like to thank the “Ministère de l’Enseingement Supérieur et de la Recherche Scientifique, Tunisia LR14ES08” and “Ministère de l’Agriculture et des Ressources Hydrauliques, Tunisia” for the support of this research work. The authors acknowledge also National Funds through Ministry of Higher Education-Tunisia for financing MedOOmics Project—“Mediterranean Extra Virgin Olive Oil Omics: profiling and fingerprinting”—“Arimnet2/0001/2015”, Strategic Projects UID/AGR/00115/2013. The authors would like also to thank Madam. Mariem DRIRA for English correcting of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Bouaziz.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Compliance with Ethics requirements

This article does not contain any studies with human or animal subjects.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drira, M., Jabeur, H., Marrakchi, F. et al. Delta-7-stigmastenol: quantification and isomeric formation during chemical refining of olive pomace oil and optimization of the neutralization step. Eur Food Res Technol 244, 2231–2241 (2018). https://doi.org/10.1007/s00217-018-3132-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-018-3132-2

Keywords

Navigation