European Food Research and Technology

, Volume 244, Issue 12, pp 2213–2229 | Cite as

Production method and varietal source influence the volatile profiles of spirits prepared from fig fruits (Ficus carica L.)

  • Raquel Rodríguez-Solana
  • Ludovina R. Galego
  • Efrén Pérez-Santín
  • Anabela RomanoEmail author
Original Paper


Fig fruits (Ficus carica L.) are used in several Mediterranean countries to produce alcoholic spirits, with either plurivarietal dried figs or, monovarietal fresh figs as the raw material. To determine the influence of different varietal attributes and production methods on the quality of fig spirits, we analyzed the volatile compounds that contribute to the aroma and organoleptic characteristics of spirits derived from eight Portuguese varieties of fresh figs, as well as mixtures of dried figs processed in the laboratory and plurivarietal fig spirits already in the market. The quantification of major and minor volatiles by GC-FID revealed that the plurivarietal dried fig spirits contained greater quantities of short-chain fatty acid esters and higher alcohols (associated with poor-quality spirits) and compounds with a negative influence on aroma and flavor (such as ethyl lactate, ethyl acetate and diethyl succinate) than the fresh fig spirits. HS-SPME/GC–MS analysis detected 130 volatile compounds, among which the esters ethyl decanoate, ethyl octanoate and ethyl dodecanoate, the aldehydes benzaldehyde and furfural, the monoterpene limonene and the norisoprenoide β-damascenone were common constituents in most of the spirits. The volatile profile of all dried fig distillates was similar and diverse, reflecting the plurivarietal origin, whereas the monovarietal fresh fig spirits produced distinct profiles (sufficient for varietal chemical differentiation), with Burjassote branco distillates containing the greatest number of volatile compounds. This volatile analysis provides a way to determine the quality of fig spirits objectively and to develop spirits with novel characteristics for the market.


Fruit spirits Monovarietal HS-SPME Volatile compounds Figs 



Commercial dried fig spirits distilled in a traditional copper alembic


Commercial dried fig spirit distilled in a steam column distillation system


Laboratory scale dried fig spirit distilled in a traditional copper alembic



The authors wish to thank Eng. João Costa and Eng. José Fernando Prazeres from DRAP Algarve for providing the fig samples, and the local producers Regionalarte-Produção de Artesanato, Lda., Tonico distillery and the distillery of Mr. Lidório da Cruz de Jesus for providing the commercial fig spirits. We are also very grateful to Ángel R. de Lera and Rosana Álvarez from the Organic Chemistry Department, Faculty of Chemistry and Centro de Investigaciones Biomédicas (CINBIO), University of Vigo, for their valuable contributions. This research was financially supported by Foundation for Science and Technology (FCT), Portugal (SFRH/BPD/103086/2014).

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Research involving human and/or animal participants

This article does not contain any studies with human or animal subjects.


  1. 1.
    Solomon A, Golubowicz S, Yablowicz Z, Grossman S, Bergman M, Gottlieb HE, Altman A, Kerem Z, Flaishman MA (2006) Antioxidant activities and anthocyanin content of fresh fruits of common fig (Ficus carica L.). J Agric Food Chem 54:7717–7723CrossRefGoogle Scholar
  2. 2.
    Duke JA, Bogenschutz-Godwin MJ, Du Celliar J, Duke PK (2002) Hand book of medicinal herbs, 2nd edn. CRC Press, Boca RatonGoogle Scholar
  3. 3.
    Werbach M (1993) Healing with food. Harper Collins, New YorkGoogle Scholar
  4. 4.
    Nesci FS, Nicolosi A, Privitera D (2004) Regional marketing of dried fig based products: an exploratory consumer study. New Medit 3:55–60Google Scholar
  5. 5.
    Orav A, Kann J (2001) Determination of peppermint and orange aroma compounds in food and beverages. Proc Estonian Acad Sci Chem 50:217–225Google Scholar
  6. 6.
    Apostolopoulou AA, Flouros AI, Demertzis PG, Akrida-Demertzi K (2005) Differences in concentration of principal volatile constituents in traditional Greek distillates. Food Control 16:157–164CrossRefGoogle Scholar
  7. 7.
    Galego L, Almeida V (2007) Aguardente de frutos e licores do Algarve. História, técnica de produção e legislação. Colibri, LisboaGoogle Scholar
  8. 8.
    Soufleros EH, Mygdalia SA, Natskoulis P (2005) Production process and characterization of the traditional Greek fruit distillate “Koumaro” by aromatic and mineral composition. J Food Compost Anal 18:699–716CrossRefGoogle Scholar
  9. 9.
    Galego LR, da Silva JP, Almeida VR, Bronze MR, Boas LV (2011) Preparation of novel distinct highly aromatic liquors using fruit distillates. Int J Food Sci Technol 46:67–73CrossRefGoogle Scholar
  10. 10.
    Lukić I, Miličević B, Banović M, Tomas S, Radeka S, Peršurić Đ (2010) Characterization and differentiation of monovarietal grape marc distillates on the basis of varietal aroma compound composition. J Agric Food Chem 58:7351–7360CrossRefGoogle Scholar
  11. 11.
    Arrieta-Garay Y, García-Llobodanin L, Pérez-Correa JR, López-Vázquez C, Orriols I, López F (2013) Aromatically enhanced pear distillates from blanquilla and conference varieties using a packed column. J Agric Food Chem 61:4936–4942CrossRefGoogle Scholar
  12. 12.
    Versini G, Franco MA, Moser S, Manca G (2012) Characterisation of pear distillates from wild and cultivated varieties in Sardinia. Int J Food Sci Technol 47:2519–2531CrossRefGoogle Scholar
  13. 13.
    Arrieta-Garay Y, Blanco P, López-Vázquez C, Rodríguez-Bencomo JJ, Pérez-Correa JR, López F, Orriols I (2014) Effects of distillation system and yeast strain on the aroma profile of Albariño (Vitis vinifera L.) grape pomace Spirits. J Agric Food Chem 62:10552–10560CrossRefGoogle Scholar
  14. 14.
    Diéguez SC, de la Peña MLG, Gómez EF (2005) Volatile composition and sensory characters of commercial Galician Orujo spirits. J Agric Food Chem 53:6759–6765CrossRefGoogle Scholar
  15. 15.
    Arrieta-Garay Y, López-Vázquez C, Blanco P, Pérez-Correa JR, Orriols I, López F (2014) Kiwi spirits with stronger floral and fruity characters were obtained with a packed column distillation system. J Inst Brew 120:111–118CrossRefGoogle Scholar
  16. 16.
    López-Vázquez C, García-Llobodanin L, Pérez-Correa JR, López F, Blanco P, Orriols I (2012) Aromatic characterization of pot distilled kiwi spirits. J Agric Food Chem 60:2242–2247CrossRefGoogle Scholar
  17. 17.
    Palassarou M, Melliou E, Liouni M, Michaelakis A, Balayiannis G, Magiatis P (2017) Volatile profile of Greek dried white figs (Ficus carica L.) and investigation of the role of β-damascenone in aroma formation in fig liquors. J Sci Food Agric 97:5254–5270CrossRefGoogle Scholar
  18. 18.
    Gozlekci S, Kafkas E, Ercisli S (2011) Volatile compounds determined by HS/GC–MS technique in peel and pulp of fig (Ficus carica L.) cultivars grown in Mediterranean region of Turkey. Not Bot Horti Agrobot 39:105–108CrossRefGoogle Scholar
  19. 19.
    Oliveira AP, Silva LR, de Pinho PG, Gil-Izquierdo A, Valentão P, Silva BM, Pereira JA, Andrade PB (2010) Volatile profiling of Ficus carica varieties by HS-SPME and GC–IT-MS. Food Chem 123:548–557CrossRefGoogle Scholar
  20. 20.
    Mujić I, Bavcon Kralj M, Jokić S, Jarni K, Jug T, Prgomet Ž (2012) Changes in aromatic profile of fresh and dried fig–the role of pre-treatments in drying process. Int J Food Sci Technol 47:2282–2288CrossRefGoogle Scholar
  21. 21.
    NP 2139 (1987) Determination of total acidity content. IPQ, Lisbon. Accessed Aug 2017
  22. 22.
    NP 2143 (1987) Determination of alcoholic volumetric content. IPQ, Lisbon. Accessed Aug 2017
  23. 23.
    OIV, International Organisation of Vine and Wine (1990) Recueil des Méthodes Internationales d’Analyse des Vins et des Moûts. OIV, Paris. Accessed Aug 2017
  24. 24.
    NP 3263 (1990) Determination of ethanal, ethyl acetate, methanol, 2-butanol, 2-methyl-1-butanol + 3-methyl-1-butanol. IPQ, Lisbon. Accessed Aug 2017
  25. 25.
    Da Porto C, Pizzale L, Bravin M, Conte LS (2003) Analyses of orange spirit flavour by direct-injection gas chromatography–mass spectrometry and headspace solid-phase microextraction/GC–MC. Flavour Fragr J 18:66–72CrossRefGoogle Scholar
  26. 26.
    Rodríguez-Solana R, Salgado JM, Domínguez JM, Cortés-Diéguez S (2014) Characterization of fennel extracts and quantification of estragole: optimization and comparison of accelerated solvent extraction and Soxhlet techniques. Ind Crops Prod 52:528–536CrossRefGoogle Scholar
  27. 27.
    IARC (1987) Monographs on the evaluation of carcinogenic risks to humans. Acetaldehyde. IARC 71:319–335. Accessed Aug 2017
  28. 28.
    Coldea TER, Socaciu C, Maria PARV, Vodnar D (2011) Gas-chromatographic analysis of major volatile compounds found in traditional fruit brandies from Transylvania, Romania. Not Bot Hortic Agrobot 39:109–116CrossRefGoogle Scholar
  29. 29.
    Rodríguez Madrera R, Pando Bedriñana R, García Hevia A, Arce MB, Suárez Valles B (2013) Production of spirits from dry apple pomace and selected yeasts. Food Bioprod Process 91:623–631CrossRefGoogle Scholar
  30. 30.
    Tsakiris A, Kallithraka S, Kourkoutas Y (2014) Grape brandy production, composition and sensory evaluation. J Sci Food Agric 94:404–414CrossRefGoogle Scholar
  31. 31.
    Commission of the European Communities (EEC) (2008) Council Regulation (EEC) No. 110/2008 of 15 January 2008, Laying down general rules on the definition, description and presentation of spirit drinks. Official Journal of the European Union 2008, L 39/16, 17–18. Accessed Aug 2017
  32. 32.
    Geroyiannaki M, Komaitis ME, Stavrakas DE, Polysiou M, Athanasopoulos PE, Spanos M (2007) Evaluation of acetaldehyde and methanol in Greek traditional alcoholic beverages from varietal fermented grape pomaces (Vitis vinifera L.). Food Control 18:988–995CrossRefGoogle Scholar
  33. 33.
    Tulashie SK, Appiah AP, Torku GD, Darko AY, Wiredu A (2017) Determination of methanol and ethanol concentrations in local and foreign alcoholic drinks and food products (Banku, Ga kenkey, Fante kenkey and Hausa koko) in Ghana. Int J Food Contam 4:14CrossRefGoogle Scholar
  34. 34.
    Christoph N, Bauer-Christoph C (2007) Flavour of spirit drinks: raw materials, fermentation, distillation, and ageing. In: Berger RG (ed) Flavours and fragrances. Springer, BerlinGoogle Scholar
  35. 35.
    Hidalgo-Togores J (2003) Tratado de enología. Mundi-Prensa, MadridGoogle Scholar
  36. 36.
    Bizelli LC, Ribeiro CAF, Novaes FV (2000) Dupla destilação da aguardente de cana: teores de acidez total e de cobre. Sci Agric 57:623–627CrossRefGoogle Scholar
  37. 37.
    Bary JP (2012) The persistent observer’s guide to wine: how to enjoy the best and skip the rest. Neon Press, GreenwichGoogle Scholar
  38. 38.
    Fotakis C, Christodouleas D, Kokkotou K, Zervou M, Zoumpoulakis P, Moulos P, Liouni M, Calokerinos A (2013) NMR metabolite profiling of Greek grape marc spirits. Food Chem 138:1837–1846CrossRefGoogle Scholar
  39. 39.
    Anli RE, Vural N, Gucer Y (2007) Determination of the principal volatile compounds of Turkish Raki. J Inst Brew 113:302–309CrossRefGoogle Scholar
  40. 40.
    López Vázquez C (2011) Estudio del comportamiento de columnas de destilación en la elaboración de aguardientes de Orujo. Características analíticas y sensoriales de los destilados. Thesis, University of Santiago de Compostela, SpainGoogle Scholar
  41. 41.
    Soufleros EH, Bertrand A (1987) Etude sur le «Tsipouro», eau-de-vie de marc traditionnelle de Grèce, précurseur de l’ouzo. Connaiss Vigne Vin 21:93–111Google Scholar
  42. 42.
    Hernández-Gómez LF, Úbeda-Iranzo J, García-Romero E, Briones-Pérez A (2005) Comparative production of different melon distillates: chemical and sensory analyses. Food Chem 90:115–125CrossRefGoogle Scholar
  43. 43.
    Rodríguez Madrera R, Lobo AP, Alonso JJM (2010) Effect of cider maturation on the chemical and sensory characteristics of fresh cider spirits. Food Res Int 43:70–78CrossRefGoogle Scholar
  44. 44.
    Hopfer H, Nelson J, Ebeler S, Heymann H (2015) Correlating wine quality indicators to chemical and sensory measurements. Molecules 20:8453–8483CrossRefGoogle Scholar
  45. 45.
    UNESCO (2005) Guia de uso de secaderos solares para frutas, legumbres, hortalizas, plantas medicinales y carnes. Accessed Sept 2017
  46. 46.
    Cortés Diéguez S, de la Peña MLG, Gómez EF (2001) Concentration of volatiles in marc distillates from Galicia according to storage conditions of the grape pomace. Chromatographia 53:S406–S411CrossRefGoogle Scholar
  47. 47.
    Plutowska B, Biernacka P, Wardencki W (2010) Identification of volatile compounds in raw spirits of different organoleptic quality. J Inst Brew 116:433–439CrossRefGoogle Scholar
  48. 48.
    Rodríguez Madrera R, Mangas Alonso JJ (1996) Obtención de aguardiente de sidra mediante alambique con columna de rectificación. Aliment Rev Tecnol Hig Aliment 277:89–93Google Scholar
  49. 49.
    Vera-Guzmán AM, Guzmán-Gerónimo RI, López MG (2010) Major and minor compounds in a Mexican spirit, young Mezcal coming from two agave species. Czech J Food Sci 28:127–132CrossRefGoogle Scholar
  50. 50.
    Cortés S, Fernández E (2011) Differentiation of Spanish alcoholic drinks, Orujo, obtained from red and white grape pomace distillation: volatile composition. Int J Food Prop 14:1349–1357CrossRefGoogle Scholar
  51. 51.
    Vallejo-Cordoba B, González-Córdova AF, del C Estrada-Montoya M (2004) Tequila volatile characterization and ethyl ester determination by solid phase microextraction gas chromatography/mass spectrometry analysis. J Agric Food Chem 52:5567–5571CrossRefGoogle Scholar
  52. 52.
    Versini G, Monetti A, Dalla-Serra A, Inama S (1990) 1st international symposium traditional spirits from wine origin. Lavoisier-Tec & DOC, ParisGoogle Scholar
  53. 53.
    Mujić I, Kralj MB, Jokić S, Jug T, Šubarić D, Vidović S, Zivković J, Jarni K (2014) Characterisation of volatiles in dried white varieties figs (Ficus carica L.). J Food Sci Technol 51:1837–1846CrossRefGoogle Scholar
  54. 54.
    Madrera RR, Valles BS (2011) Determination of volatile compounds in apple pomace by stir bar sorptive extraction and gas chromatography–mass spectrometry (SBSE-GC–MS). J Food Sci 76:C1326–C1334CrossRefGoogle Scholar
  55. 55.
    Shahidi F, Alasalvar C (2016) Handbook of functional beverages and human health. CRC Press, Boca RatonCrossRefGoogle Scholar
  56. 56.
    Jun L, Tian YZ, Sun BY, Dan Y, Chen JP, Men QM (2012) Analysis on volatile constituents in leaves and fruits of Ficus carica by GC–MS. Chin Herb Med 4:63–69Google Scholar
  57. 57.
    Oliveira C, Barbosa A, Silva Ferreira AC, Guerra J, Guedes de Pinho P (2006) Carotenoid profile in grapes related to aromatic compounds in wines from Douro region. J Food Sci 71:S1–S7CrossRefGoogle Scholar
  58. 58.
    Rodríguez-Solana R, Salgado JM, Domínguez JM, Cortés-Diéguez S (2016) Phenolic compounds and aroma-impact odorants in herb liqueurs elaborated by maceration of aromatic and medicinal plants in grape marc distillates. J Inst Brew 122:653–660CrossRefGoogle Scholar
  59. 59.
    Franitza L, Granvogl M, Schieberle P (2016) Influence of the production process on the key aroma compounds of rum: from molasses to the spirit. J Agric Food Chem 64(47):9041–9053CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculdade de Ciências e TecnologiaUniversidade do AlgarveFaroPortugal
  2. 2.Centro para os Recursos Biológicos e Alimentos Mediterrânicos (MeditBio)Universidade do AlgarveFaroPortugal
  3. 3.Instituto Superior de EngenhariaUniversidade do AlgarveFaroPortugal
  4. 4.Universidad Internacional de La Rioja (UNIR)LogroñoSpain

Personalised recommendations