European Food Research and Technology

, Volume 244, Issue 10, pp 1741–1750 | Cite as

Degradation kinetics of anthocyanins and polyphenols during storage of red apple juice produced from red-fleshed apples

  • Thomas Knebel
  • Peter Braun
  • Helmut Dietrich
Original Paper


The aim of this study was to determine the stability of various anthocyanins in red-coloured apple juice for the development of a new attractive beverage. Red-coloured apple juice was generated from red-fleshed apples of cultivar “Maggy” to analyse the composition of anthocyanins and the effect of storage at various temperatures. Cyanidin-3-galactoside (cy-3-gal) was identified as the main component of the anthocyanin profile, next to 5-carboxypyranocyanidin-3-hexoside, tentatively carboxypyranocyanidin-3-galactoside, and two cyanidin-3-pentosides. In addition, we found cyanidin-3-glucoside, another 5-carboxypyranocyanidin-3-hexoside, probably 5-carboxypyranocyanidin-3-glucoside, one 5-carboxypyranocyanidin-3-pentoside, two unknown anthocyanins, and another cyanidin-3-pentoside. The loss of anthocyanins during storage can be described as a first-order reaction as it is the case also for other red-coloured fruit juices. The T1/2 value of cyanidin-3-galactoside varied between 53 and 84 days after storage at 4 °C, and between 15 and 13 days at 20 °C. Storage at 37 °C reduced the T1/2 values from 7 to 6 days. A much longer half-life was observed for 5-carboxypyranocyanidin-3-galactoside. The T1/2 values at 4 °C were 250–315 days and 50–112 days at 20 °C. At 37 °C, T1/2 decreased from 23 to 25 days. The antioxidant capacity (TEAC) was constant during storage for at least 1 year. The colour of red apple juice, however, is less stable than in aronia, black currant and red grape juices, for example. Taken together, red apple juice, generated of the cultivar “Maggy”, is an attractive new fruit juice, but other cultivars of red-fleshed apples with higher anthocyanin concentrations would achieve a more colour-intense product.


Red apple juice Beverage technology Colour Anthocyanins Storage Kinetics 



We gratefully acknowledge the German Ministry of Education and Research (Project FHprofUnd, Reference Number 1737 × 09) for funding.

Compliance with ethical standards

Conflict of interest

Authors declare that they have no competing interests.

Compliance with ethics requirements

This article does not contain any studies with human or animal subjects.


  1. 1.
    Nocker S, Berry G, Najdowski J, Michelutti R, Luffman M, Forsline P, Alsmairat N, Beaudry R, Nair MG, Ordidge M (2012) Genetic diversity of red-fleshed apples (Malus). Euphytica 185:281–293CrossRefGoogle Scholar
  2. 2.
    Rupasinghe HP, Huber GM, Embree C, Forsline PL (2010) Red-fleshed apple as a source for functional beverages. Can J Plant Sci 90:95–100CrossRefGoogle Scholar
  3. 3.
    Mazza G, Velioglu YS (1992) Anthocyanins and other phenolic compounds in fruits of red-flesh apples. Food Chem 43:113–117CrossRefGoogle Scholar
  4. 4.
    Balázs A, Tóth M, Blazics B, Héthelyi É, Szarka S, Ficsor E, Ficzek G, Lemberkovics É, Blázovics A (2012) Investigation of dietary important components in selected red fleshed apples by GC–MS and LC–MS. Fitoterapia 83:1356–1363CrossRefPubMedGoogle Scholar
  5. 5.
    Sadilova E, Stintzing FC, Carle R (2006) Chemical quality parameters and anthocyanin pattern of red-fleshed Weirouge apples. J Appl Bot Food Qual 80:82–87Google Scholar
  6. 6.
    Timberlake CF, Bridle P (1971) The anthocyanins of apples and pears: the occurrence of acyl derivatives. J Sci Food Agric 22:509–513CrossRefGoogle Scholar
  7. 7.
    Honda C, Kotoda N, Wada M, Kondo S, Kobayashi S, Soejima J, Zhang Z, Tsuda T, Moriguchi T (2002) Anthocyanin biosynthetic genes are coordinately expressed during red coloration in apple skin. Plant Physiol Biochem 40:955–962CrossRefGoogle Scholar
  8. 8.
    Cemeroglu B, Velioglu YS, Isik S (1994) Degradation kinetics of anthocyanins in sour cherry juice and concentrate. J Food Sci 59:1216–1218CrossRefGoogle Scholar
  9. 9.
    Wang WD, Xu SY (2007) Degradation kinetics of anthocyanins in blackberry juice and concentrate. J Food Eng 82:271–275CrossRefGoogle Scholar
  10. 10.
    Kırca A, Özkan M, Cemeroğlu B (2007) Effects of temperature, solid content and pH on the stability of black carrot anthocyanins. Food Chem 101:212–218CrossRefGoogle Scholar
  11. 11.
    Bonerz D, Würth K, Dietrich H, Will F (2007) Analytical characterization and the impact of ageing on anthocyanin composition and degradation in juices made from five different sour cherry cultivars. Eur Food Res Technol 224:355–364CrossRefGoogle Scholar
  12. 12.
    Würth K, Bonerz D, Will F, Patz CD, Quast P, Hillebrand S (2009) Anthocyanalterung in Säften und Konzentraten der schwarzen Johannisbeere—Teil 1: Kinetik der Abnahme von Anthocyanen bei der Lagerung. Dtsch Lebensm Rundsch 105:176–182Google Scholar
  13. 13.
    Würth K, Bonerz D, Will F, Patz CD, Quast P, Hillebrand S, Winterhalter P, Dietrich H (2010) Anthocyanalterung in Säften und Konzentraten der Aroniabeere (Aronia melanocarpa). Dtsch Lebensm Rundsch 106:549–559Google Scholar
  14. 14.
    Alighourchi H, Barzegar M (2009) Some physicochemical characteristics and degradation kinetic of anthocyanin of reconstituted pomegranate juice during storage. J Food Eng 90:179–185CrossRefGoogle Scholar
  15. 15.
    Malec M, Le Quéré JM, Sotin H, Kolodziejczyk K, Bauduin R, Guyot S (2014) Polyphenol profiling of a red-fleshed apple cultivar and evaluation of the color extractability and stability in the juice. J Agric Food Chem 62:6944–6954CrossRefPubMedGoogle Scholar
  16. 16.
    Février H, Le Quéré J-M, Le Bail G, Guyot S (2017) Polyphenol profile, PPO activity and pH variation in relation to colour changes in a series of red-fleshed apple juices. LWT Food Sci Technol 85:353–362CrossRefGoogle Scholar
  17. 17.
    Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans CA (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26:1231–1237CrossRefPubMedGoogle Scholar
  18. 18.
    Josuttis M, Hofmann D, Patz CD, Dietrich H (2010) Testsysteme zur Messung von antioxidativen Inhaltsstoffen: Anwendungen, Möglichkeiten und Grenzen - ein Methodenvergleich. Dtsch Lebensm Rundsch 106:254–262Google Scholar
  19. 19.
    Singleton VL, Rossi JA (1965) Colorimetry of total phenolics with phosphotungstic acid reagents. Am J Enol Vitic 16:144–158Google Scholar
  20. 20.
    Patras A, Brunton NP, O’Donnell C, Tiwari B (2010) Effect of thermal processing on anthocyanin stability in foods; mechanisms and kinetics of degradation. Trends Food Sci Technol 21:3–11CrossRefGoogle Scholar
  21. 21.
    Wrolstad RE, Garzón GA (2002) Comparison of the stability of pelargonidin-based anthocyanins in strawberry juice and concentrate. J Food Sci 67:1288–1299CrossRefGoogle Scholar
  22. 22.
    Marquez A, Serratosa M, Merida J (2013) Pyranoanthocyanin derived pigments in wine: structure and formation during winemaking. J Chem 15:1–15Google Scholar
  23. 23.
    Kırca A, Cemeroğlu B (2003) Degradation kinetics of anthocyanins in blood orange juice and concentrate. Food Chem 81:583–587CrossRefGoogle Scholar
  24. 24.
    Bąkowska A, Kucharska AZ, Oszmiański J (2003) The effects of heating, UV irradiation, and storage on stability of the anthocyanin–polyphenol copigment complex. Food Chem 81:349–355CrossRefGoogle Scholar
  25. 25.
    Würth K (2007) Untersuchung von Alterungsvorgängen phenolischer Inhaltsstoffe: Im Hinblick auf die Saftqualität und Festlegung des Mindesthaltbarkeitsdatums von roten Traubensäften (Vitis vinifera) sowie Saft und Konzentrat der schwarzen Johannisbeere (Ribes nigrum L.) und der Aroniabeere (Aronia melanocarpa). Der Andere Verlag, TönningGoogle Scholar
  26. 26.
    Thielen C (2005) Auswahl und Verarbeitung von Früchten zur Steigerung der Gehalte an phenolischen Antioxidantien in Fruchtsäften Selection and processing of fruits to increase the content of polyphenols in fruit juices, Dissertation, University of Kaiserslautern, Kaiserslautern Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Wine Analysis and Beverage TechnologyHochschule Geisenheim UniversityGeisenheimGermany
  2. 2.Institute of PomologyGeisenheimGermany

Personalised recommendations