Advertisement

European Food Research and Technology

, Volume 244, Issue 8, pp 1487–1496 | Cite as

Harvest of Sangiovese grapes: the influence of material other than grape and unripe berries on wine quality

  • Lorenzo Guerrini
  • Piernicola Masella
  • Giulia Angeloni
  • Luca Calamai
  • Silvia Spinelli
  • Stefano Di Blasi
  • Alessandro Parenti
Original Paper

Abstract

The grape harvest period and applied methods determine the levels of unripe berries (substandard berries, SSB) and material other than grape (MOG) in grape must. This study describes, in a full-factorial experiment at the industrial scale, the impact of different levels of MOG and SSB on the chemical composition and the sensorial properties of Sangiovese wines. The addition to the grape juice of 30 g/kg MOG led to significant changes in chemical composition, altering key components such as titratable acidity, lactic acid level, flavonoids concentration and color-related parameters. Sensorial parameters were also modified, as demonstrated by statistically significant differences both in astringency and in the concentration of volatile organic compounds. The threshold level for unripe (SSB) berries was arbitrarily defined as below 21.5 °Bx. In the experimental vineyard used here, 19–36% of grapes were unripe, depending on the harvest zone. The level of SSB influenced some important chemical and sensorial characteristics. Changes in SSB content altered ethanol concentration, titratable acidity, malic and lactic acid levels, a range of polyphenol-related parameters, certain volatile organic compound concentrations, as well as color and bitterness.

Keywords

Grape quality Ripening degree Harvesting techniques Material other than grape 

Notes

Acknowledgements

The authors would like to thank the Consorzio Tuscania s.r.l. for its financial support.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

References

  1. 1.
    Ribéreau-Gayon P, Dubourdieu D, Donèche B, Lonvaud A (2004) I, Edagricole, Bologna, Italy, Trattato di EnologiaGoogle Scholar
  2. 2.
    Rolle L, Torchio F, Giacosa S, Segade SR, Cagnasso E, Gerbi V (2012) Assessment of physicochemical differences in Nebbiolo grape berries from different production areas and sorted by flotation. Am J Enol Vitic 63:195–204CrossRefGoogle Scholar
  3. 3.
    Parenti A, Spugnoli P, Masella P, Guerrini L, Benedettelli S, Blasi D, S (2015) Comparison of grape harvesting and sorting methods on factors affecting the must quality. J Agri Eng 46:19–22Google Scholar
  4. 4.
    Fiorillo E, Crisci A, Filippis TDE, Gennaro SFDI., Blasi SDI, Matese A, Genesio L (2012) Airborne high-resolution images for grape classification: changes in correlation between technological and late maturity in a Sangiovese vineyard in Central Italy. Aust J Grape Wine Res 18:80–90CrossRefGoogle Scholar
  5. 5.
    Kontoudakis N, Esteruelas M, Fort F, Canals JM, De Freitas V, Zamora F (2011) Influence of the heterogeneity of grape phenolic maturity on wine. Food Chem 3:767–774CrossRefGoogle Scholar
  6. 6.
    Ward SC, Petrie PR, Johnson TE, Boss PK, Bastian SEP (2015) Unripe berries and petioles in vitis vinifera cv. cabernet sauvignon fermentations affect sensory and chemical profiles. Am J Enol Vitic 4:435–443CrossRefGoogle Scholar
  7. 7.
    Falconer R, Liebich B, Hart A (2006) Automated color sorting of hand-harvested chardonnay. Am J Enol Vitic 57:491–496Google Scholar
  8. 8.
    Allan W (2004) Winegrape assessment in the vineyard and at the winery. Winetitles, AdelaideGoogle Scholar
  9. 9.
    Suriano S, Alba V, Di Gennaro D, Basile T, Tamborra M, Tarricone L (2016) Major phenolic and volatile compounds and their influence on sensorial aspects in stem-contact fermentation winemaking of Primitivo red wines. J Food Sci Technol 53:3329–3339CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Pascual O, González-Royo E, Gil M, Gómez-Alonso S, García-Romero E, Canals JM, Zamora F (2016) Influence of grape seeds and stems on wine composition and astringency. J Agric Food Chem 64:6555–6566CrossRefPubMedGoogle Scholar
  11. 11.
    Oiv (2009) Compendium of international methods of wine and must analysis. International Organisation of Vine and Wine, Paris, pp 154–196Google Scholar
  12. 12.
    Somers CT, Evans ME (1977) Spectral evaluation of young red wines: anthocyanin equilibria, total phenolics, free and molecular SO2 “chemical age”. J Sci Food Agric 28:279–287CrossRefGoogle Scholar
  13. 13.
    Di Stefano R, Cravero MC, Gentilini N (1989) Metodi per lo studio dei polifenoli dei vini. L’Enotecnico XXV(5):83–89Google Scholar
  14. 14.
    Di Stefano R, Cravero MC (1989) I composti fenolici e la natura del colore dei vini rossi. L’Enotecnico XXV(10):81–87Google Scholar
  15. 15.
    Guerrini L, Masella P, Spugnoli P, Spinelli S, Calamai L, Parenti A (2016) A condenser to recover organic volatile compounds during vinification. Am J Enol Vitic: 67(2):163–168CrossRefGoogle Scholar
  16. 16.
    Oiv (2015) Documento sull’analisi sensoriale del vino. International Organisation of Vine and WineGoogle Scholar
  17. 17.
    Fregoni M (2005) Viticoltura di qualità. Phytoline, ItalyGoogle Scholar
  18. 18.
    Pinero JC, Bates DM (2000) Mixed-effects models in S and S-PLUS. Springer, USACrossRefGoogle Scholar
  19. 19.
    Sun B, Spranger MI (2005) Changes in phenolic composition of Tinta Miúda red wines after 2 years of ageing in bottle: effect of winemaking technologies. Eur Food Res Technol 221:305–312CrossRefGoogle Scholar
  20. 20.
    Hashizume K, Kida S, Samuta T (1998) Effect of steam treatment of grape cluster stems on the methoxypyrazine, phenolic, acid, and mineral content of red wines fermented with stems. J Agric Food Chem 46:4382–4386CrossRefGoogle Scholar
  21. 21.
    Conde C, Silva P, Fontes N, Dias ACP, Tavares RM, Sousa MJ, Gerós H (2007) Biochemical changes throughout grape berry development and fruit and wine quality. Food (Glob Sci Books) 1:1–22Google Scholar
  22. 22.
    Spranger MI, Clímaco MC, Sun B, Eiriz N, Fortunato C, Nunes A, Belchior AP (2004) Differentiation of red winemaking technologies by phenolic and volatile composition. Anal Chim Acta 513:151–161CrossRefGoogle Scholar
  23. 23.
    García E, Chacón JL, Martínez J, Izquierdo PM (2003) Changes in volatile compounds during ripening in grapes of Airén, Macabeo and Chardonnay white varieties grown in La Mancha region (Spain). Food Sci Technol Int 9:33–41CrossRefGoogle Scholar
  24. 24.
    Oliveira JM, Faria M, Sá F, Barros F, Araújo IM (2006) C6-alcohols as varietal markers for assessment of wine origin. Anal Chim Acta 563:300–309CrossRefGoogle Scholar
  25. 25.
    Vilanova M, Ugliano M, Varela C, Siebert T, Pretorius IS, Henschke PA (2007) Assimilable nitrogen utilisation and production of volatile and non-volatile compounds in chemically defined medium by Saccharomyces cerevisiae wine yeasts. Appl Microbiol Biotechnol 77:145–157CrossRefPubMedGoogle Scholar
  26. 26.
    Picariello L, Gambuti A, Picariello B, Moio L (2017) Evolution of pigments, tannins and acetaldehyde during forced oxidation of red wine: effect of tannins addition. Food Sci Technol 77:370–375Google Scholar
  27. 27.
    Matese A, Di Gennaro SF (2015) Technology in precision viticulture: a state of the art review. Int J Wine Res 7:69–81CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Lorenzo Guerrini
    • 1
  • Piernicola Masella
    • 1
  • Giulia Angeloni
    • 1
  • Luca Calamai
    • 2
    • 3
  • Silvia Spinelli
    • 1
  • Stefano Di Blasi
    • 4
  • Alessandro Parenti
    • 1
  1. 1.Dipartimento di Gestione dei Sistemi Agrari, Alimentari e Forestali (GESAAF)Università degli Studi di FirenzeFlorenceItaly
  2. 2.Dipartimento di Scienze delle Produzioni Agroalimentari e dell’Ambiente (DISPAA)Università degli Studi di FirenzeFlorenceItaly
  3. 3.Istituto Bioscienze e Biorisorse(IBBR) CNRFlorenceItaly
  4. 4.Consorzio Tuscania s.r.l.FirenzeItaly

Personalised recommendations