Advertisement

European Food Research and Technology

, Volume 244, Issue 8, pp 1439–1445 | Cite as

Macro-element ratios provide improved identification of the botanical origin of mono-floral honeys

  • Nikolett Czipa
  • Loránd Alexa
  • Clive J. C. Phillips
  • Béla Kovács
Original Paper
  • 100 Downloads

Abstract

Major macronutrient concentrations (K, Ca, Mg, Na, P, and S) and element ratios were determined in 140 Hungarian mono-floral honey samples (acacia, linden, sunflower, rape, chestnut, forest, silk grass, and facelia) by inductively coupled plasma-optical emission spectrometry (ICP-OES). One-way ANOVA (LSD and Dunnett T3 test) and linear discriminant analysis (LDA) were used to determine the botanical origin based on the element content and element ratio of different honey types. Analysing six element concentrations in the honeys of different botanical origin with LDA allowed the botanical origin of 96% of honeys to be predicted. Reducing the examined elements to K, Mg, and Na increased the accuracy of predictions, but it was still not possible to distinguish acacia and facelia honeys. However, examination of element ratios showed that K/Na and K/Mg ratios were able to separate every honey type from each other with 100% cross-validation. It is concluded that using macro-element ratios rather than macro-element concentrations, it is possible to precisely discriminate the floral origin of honey samples.

Keywords

Honey Element Element ratio ICP Botanical origin 

Notes

Compliance with ethical standards

Conflict of interest

There is no conflict of interest.

Compliance with ethics requirements

There has not been any research involving human or animal participants performed.

References

  1. 1.
    Gulyás S, Bartók T, Stefanik K (1983) Adatok a nektár és a méz fémeselem tartalmához. Méhészet 31:4Google Scholar
  2. 2.
    Alvarez-Suarez JM, Tulipani S, Romandini S, Bertoli E, Battino M (2010) Contribution of honey in nutrition and human health: a review. Med J Nutrition Metab 3:15–23CrossRefGoogle Scholar
  3. 3.
    Crane E (1975) Honey: comprehensive survey. Heinemenn, London, p 608Google Scholar
  4. 4.
    Feldman Zs (2016) Hungarian Apiary National Program. Földművelésügyi Minisztérium, BudapestGoogle Scholar
  5. 5.
    Czipa N, Novák A, Kovács B (2016) Fajtamézek botanikai eredetének vizsgálata (analysis of the botanical origins of monofloral honey types). Élelmvizsg Közl (J Food Invest) 62(4):1317–1324Google Scholar
  6. 6.
    Nayik GA, Suhag Y, Majid I, Nanda V (2016) Discrimination of high altitude Indian honey by chemometric approach according to their antioxidant properties and macro minerals. J Saudi Soc Agric Sci.  https://doi.org/10.1016/j.jssas.2016.04.004 CrossRefGoogle Scholar
  7. 7.
    Kaygusuz H, Tezcan F, Bedia Erim F, Yildiz O, Sahin H, Can Z, Kolayli S (2016) Characterization of Anatolian honeys based on minerals, bioactive components and principal component analysis. LWT Food Sci Technol 68:273–279CrossRefGoogle Scholar
  8. 8.
    Belay A, Haki GD, Birringer M, Borck H, Addi A, Baye K, Melaku S (2017) Rheology and botanical origin of Ethiopian monofloral honey. LWT Food Sci Technol 75:393–401CrossRefGoogle Scholar
  9. 9.
    Kortesniemi M, Slupsky CM, Ollikka T, Kauko L, Spevacek AR, Sjövall O, Yang B, Kallio H (2016) NMR profiling clarifies the characterization of Finnish honeys of different botanical origins. Food Res Int 86:83–92CrossRefGoogle Scholar
  10. 10.
    Popek S, Halagarda M, Kursa K (2017) A new model to identify botanical origin of Polish honeys based on the physicochemical parameters and chemometric analysis. LWT Food Sci Technol 77:482–487CrossRefGoogle Scholar
  11. 11.
    Oroian M, Amariei S, Leahu A, Gutt G (2015) Multi-element composition of honey as a suitable tool for its authenticity analysis. Pol J Food Nutr Sci 65(2):93–100Google Scholar
  12. 12.
    Czipa N, Diósi G, Phillips C, Kovács B (2017) Examination of honeys and flowers as soil element indicator. Environ Monit Assess 189:412CrossRefPubMedGoogle Scholar
  13. 13.
    MSZ 6950-3:1977: MÉZ–Mikroszkópos vizsgálat,Google Scholar
  14. 14.
    Kovács B, Győri Z, Prokisch J, Loch J, Dániel P (1996) A study of plant sample preparation and inductively coupled plasma emission spectrometry parameters. Commun Soil Sci Plant Anal 27(5–8):1177–1198CrossRefGoogle Scholar
  15. 15.
    Bilandzic N, Gačić M, Ðokić M, Sedak M, Šipušić DI, Končurat A, Gajger IT (2014) Major and trace elements levels in multifloral and unifloral honeys in Croatia. J Food Comp Anal 33:132–138CrossRefGoogle Scholar
  16. 16.
    Bontempo L, Camin F, Ziller L, Perini M, Nicolini G, Larcher R (2016) Isotopic and elemental composition of selected types of Italian honey. Measurement 98:283–289CrossRefGoogle Scholar
  17. 17.
    Di Bella G, Lo Turco V, Potorti AG, Bua GD, Fede MR, Dugo G (2015) Geographical discrimination of Italian honey by multi-element analysis with a chemometric approach. J Food Comp Anal 44:25–35CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Nikolett Czipa
    • 1
  • Loránd Alexa
    • 1
  • Clive J. C. Phillips
    • 2
  • Béla Kovács
    • 1
  1. 1.Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Food ScienceUniversity of DebrecenDebrecenHungary
  2. 2.School of Veterinary ScienceUniversity of QueenslandGattonAustralia

Personalised recommendations