Skip to main content

Advertisement

Log in

Multiplex real-time PCR for the detection of insect DNA and determination of contents of Tenebrio molitor, Locusta migratoria and Achaeta domestica in food

  • Original paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

In Europe, edible insects are not a part of a common diet. But according to the Food and Agriculture Organization of the united nations (FAO), animal protein from insects could be an ecological, economic and healthy addition to human diets. In the EU there are currently no regulations on insects as food for human consumption. The production and sales of products containing insects are not prohibited. Several companies are producing and marketing food products containing insects already. In Switzerland, the recently revised food law allows and regulates insect production and products for human consumption. Like other ingredients, such food additives, insects have to be labeled correctly. To enforce such labeling, food control laboratories need analytical tools to detect insect ingredients and determine their species and quantity. We, therefore, developed a multiplex real-time PCR method detecting insect DNA generally and the three approved species specifically. The performance of this multiplex real-time PCR method was assessed during validation including data from other laboratories. These results indicate that the method is fit for purpose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Kambhampati S, Smith PT (1995) PCR primers for the amplification of four insect mitochondrial gene fragments. Insect Mol Biol 4(4):233–236

    Article  CAS  PubMed  Google Scholar 

  2. Ji Y-J, Zhang D-X, He L-J (2003) Evolutionary conservation and versatility of a new set of primers for amplifying the ribosomal internal transcribed spacer regions in insects and other invertebrates. Mol Ecol Notes 3:581–585

    Article  CAS  Google Scholar 

  3. Pons J, Barraclough TG, Gomez-Zurita J, Cardoso A, Duran DP, Hazell S, Vogler AP (2006) Sequence-based species delimitation for the DNA taxonomy of undescribed insects. Syst Biol 55(4):595–609

    Article  PubMed  Google Scholar 

  4. Cognato AI (2006) Standard percent DNA sequence difference for insects does not predict species boundaries. J Econ Entomol 99(4):1037–1045

    Article  CAS  PubMed  Google Scholar 

  5. Caterino MS, Cho S, Sperling FAH (2000) The current state of insect molecular systematics: a thriving tower of babel. Annu Rev Entomol 45:1–54

    Article  CAS  PubMed  Google Scholar 

  6. Hebert PD, Cywinska A, Ball SL (2003) Biological identifications through DNA barcodes. Proc R Soc Lond B Biol Sci, 270(1512), 313–321

    Article  CAS  Google Scholar 

  7. Hebert PD, Gregory TR (2005) The promise of DNA barcoding for taxonomy. Syst Biol 54(5):852–859

    Article  Google Scholar 

  8. Park DS, Suh SJ, Hebert PDN, Oh HW, Hong KJ (2011) DNA barcodes for two scale insect families, mealybugs (Hemiptera: Pseudococcidae) and armored scales (Hemiptera: Diaspididae). Bull Entomol Res 101:429–434

    Article  CAS  PubMed  Google Scholar 

  9. Van Hiel MB, Van Wielendaele P, Temmerman L, Van Soest S, Vuerinckx K, Huybrechts R, Simonet G (2009) Identification and validation of housekeeping genes in brains of the desert locust Schistocerca gregaria under different developmental conditions. BMC Mol Biol 10(1):56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Xue JL, Salem TZ, Turney CM, Cheng XW (2010) Strategy of the use of 28S rRNA as a housekeeping gene in real-time quantitative PCR analysis of gene transcription in insect cells infected by viruses. J Virol Methods 163(2):210–215

    Article  CAS  PubMed  Google Scholar 

  11. Majerowicz D, Alves-Bezerra M, Logullo R, Fonseca-de-Souza AL, Meyer-Fernandes JR, Braz GRC, Gondim KC (2011) Looking for reference genes for real-time quantitative PCR experiments in Rhodnius prolixus (Hemiptera: Reduviidae). Insect Mol Biol 20(6):713–722

    Article  CAS  PubMed  Google Scholar 

  12. Teng X, Zhang Z, He G, Yang L, Li F (2012) Validation of reference genes for quantitative expression analysis by real-time RT-PCR in four lepidopteran insects. J Insect Sci 12(60):1–17

    Article  Google Scholar 

  13. Reim T, Thamm M, Rolke D, Blenau W, Scheiner R (2013) Suitability of three common reference genes for quantitative real-time PCR in honey bees. Apidologie 44(3):342–350

    Article  CAS  Google Scholar 

  14. Yang C, Pan H, Liu Y, Zhou X (2014) Selection of reference genes for expression analysis using quantitative real-time PCR in the pea aphid, Acyrthosiphon pisum (Harris)(Hemiptera, Aphidiae). PloS One, 9(11), e110454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhou X, Li Y, Liu S, Yang Q, Su X, Zhou L, Huang Q (2013) Ultra-deep sequencing enables high-fidelity recovery of biodiversity for bulk arthropod samples without PCR amplification. Gigascience 2(1):4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Morf NV, Wood KL, Köppel R, Felderer N, Daniels M, Tenger B, Kratzer A (2013) A multiplex PCR method to identify bushmeat species in wildlife; forensics Forensic Sci Int Genet Suppl Ser, 4, 1, e202–e203

    Article  Google Scholar 

  17. Herbert PD, Cywinska A, Ball SL, de Waard JR (2003) Biological identifications through DNA barcodes Proc Biol Sci 270 (1512) 313–321

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Food Control Authority of the Canton Zürich for providing the resources for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to René Köppel.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Compliance with ethics requirements

This article does not contain any studies with human or mammalian subjects.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Illustrations and Tables 1, 2, 3, 4, 5, 6 and 7

Appendix: Illustrations and Tables 1, 2, 3, 4, 5, 6 and 7

Tetraplex real-time PCR system AllInsect

Table 1 Tetraplex real-time PCR system AllInsect for the simultaneous determination of three specific insects and an insect system detecting a broad range of insects

The primer Ins3.2F can also be used for sequencing of amplicons of the unspecific system

The primers Ins3.2F/R, Ins3.1R and Ins3.3R were designed on a fusion sequence of KX771130.1 KY883616.1 KX053394.1 and KX431795.1 to cover a broad range of insects (mismatches in capital letters):

ataccaatc ctagtac gattaatatt aggagctccc gatatagcat tcctcgact aaataatata ccattttgac ttctcccacg atctttgtct atcttaatta taggtcttta taaagaagga gcacga tctttccc tcgaataaat aatatgagat tttgattatt gattccatca ttatttttat taattttaag atctataatt aatattggtg taggnactgg gtgaactgtt tatcctcctt tatcattaaa tataagtcat agaggaatat cagttgattt agctattttt tctttacata ttgctggagt atcct att

The primers Alph F/R for Alphitobius diaperinus were added to cover this species as it is used to produce insect proteins.

Location in the genome of KR052883 cytochrome oxidase I, position 178–356:

gttccta ttagcaactc ttcatggcac tcaactaaat tatagaccct cccttctgtg agctttagga tttgtattcc tattcacagt aggaggatta accggagtag tattagcaaa ctcatcaatt gatattatat tacat cacttccattatgt

Achaeta domestica

Primer/probe

Final conc. µM

Sequence

Amplicon

Source/GenBank acc.no./labelling

Ache4.1F

0.8

GGT TAT ACC AAT TAT AAT TGG TGG

125 bp

This work

Ache4.1R

0.8

GGG TTA GTG AGG GTG GTA AAA GTC

 

Ache2Joe

0.08

GGT GCA CCC GAT ATA GCC TTT CCT CG

Joe/BHQ1

Location in the genome of KR919588 Cytochrome oxidase I cytochrome oxidase I, position 159–284

121 atcgtaactgcacatgcatttgtcataatttttttcat attcggaaattgattagtacccctaatatta aataaacaatataagatttt ttttattaaccagaaga 301

Tenebrio molitor

Primer/probe

Final conc. µM

Sequence

Amplicon

Source/GenBank acc.no./labelling

Tene2F

0.6

CCA TGA GTA CGA ATA AGA GAA ACC

156 bp

This work

Tene2R

0.6

GCT TGA ATT TGT TGT TTT ATC TG

 

TeneRox

0.08

AAT AGA TAG ACC AAG AAC GCC TTC ACA

Rox/BHQ2

Location in the genome of KP994554 NADH dehydrogenase subunit 4L, position 9477–9533

9361 ttgaaaataa tcgttt aa aactctaaaag ttaaaaaaat tatagaaaaa aaataatctc ttcccaaata agataaataa ataaaaagaa cataataaa cttaaaag 9541

Locusta migratoria

Primer/probe

Final conc. µM

Sequence

Amplicon

Source/GenBank acc.no./labelling

Locu4.2F

0.6

CTG TAT TTT ATA TTC GGG GCA TG

120 bp

This work

Locu4.4R

0.6

GAT TAC ATT ATA TAC TTG ATC ATC G

 

Locu3Cy5

0.08

TTG TTC CTG GTT GAC CTA ATT CAG CTC GAA

Cy5/BHQ2

Location in the genome of KM362655 cytochrome oxidase I, position 5-124

1 taca agctggaatagtaggaacatcaataagaataattattcgagct taattaa attacagcacacgcat 141

Table 2 Specificity tests of close relatives to Tenebrio molitor, Achaeta domestica and Locusta migratoria
Table 3 Performance of the AllInsect-system
Table 4 Recipe of cookies to be used as calibration material
Table 5 Recipe of burgers to be used as calibration material
Table 6 Results of the calibration cookies (for insect unspecific) and burger for the specific systems
Table 7 Results of a market survey

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Köppel, R., Schum, R., Habermacher, M. et al. Multiplex real-time PCR for the detection of insect DNA and determination of contents of Tenebrio molitor, Locusta migratoria and Achaeta domestica in food. Eur Food Res Technol 245, 559–567 (2019). https://doi.org/10.1007/s00217-018-03225-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-018-03225-5

Keywords

Navigation