Abstract
Cocoa originates from the beans of the cocoa tree (Theobroma cacao L.). It is an important commodity and the main ingredient in chocolate manufacture. Its value and quality are related to complex flavors and to its distinct sensory properties. The increasing demand for cocoa and its rising price urges the research for cocoa substitutes. A potential substitute for cocoa is carob. Carob is the fruit of an evergreen tree (Ceratonia siliqua L.) cultivated in the Mediterranean area, well known for its valuable locust bean gum and also for carob powder and syrup that are obtained from carob pulp. Cocoa beans and carob pods contain various phytochemicals including polyphenols, proteins and amino acids, fatty acids, carbohydrates and fiber. Phytochemicals represent an important source of nutrients and compounds that are beneficial to human health. In this review, phytochemicals in cocoa beans and carob pods and their impact on human health are reviewed. The bioactive compounds that are present in carob, in conjunction with the cocoa-like flavors and unique sensory properties that are enhanced by carob powder roasting, underline carob’s potential to substitute cocoa in various food products. These food applications are discussed in this review.
This is a preview of subscription content, access via your institution.




References
Aprotosoaie AC, Luca SV, Miron A (2016) Flavor chemistry of cocoa and cocoa products—an overview. Compr Rev Food Sci Food Saf 15(1):73–91. https://doi.org/10.1111/1541-4337.12180
Araujo QRD, Gattward JN, Almoosawi S, Parada Costa Silva MDGC, Dantas PADS, Araujo Júnior QRD (2016) Cocoa and human health: from head to foot—a review. Crit Rev Food Sci Nutr 56(1):1–12. https://doi.org/10.1080/10408398.2012.657921
Kongor JE, Hinneh M, de Walle DV, Afoakwa EO, Boeckx P, Dewettinck K (2016) Factors influencing quality variation in cocoa (Theobroma cacao) bean flavour profile—a review. Food Res Int 82:44–52. https://doi.org/10.1016/j.foodres.2016.01.012
Nair KPP (2010) 5-Cocoa (Theobroma cacao L.). The agronomy and economy of important tree crops of the developing world. Elsevier, London, pp 131–180
Fowler MS (2009) Cocoa beans: from tree to factory. Industrial chocolate manufacture and use. Wiley-Blackwell, New York, pp 10–47
Chapter 2 Chocolate Ingredients (2008) In: The Science of Chocolate (2). The Royal Society of Chemistry, pp 11–38
Afoakwa EO (2010) Cocoa cultivation, bean composition and chocolate flavour precursor formation and character. Chocolate science and technology. Wiley, New York, pp 12–34
Bertazzo A, Comai S, Mangiarini F, Chen S (2013) Composition of Cacao Beans. In: Watson RR, Preedy VR, Zibadi S (eds) Chocolate in health and nutrition. Humana Press, Totowa, pp 105–117
Steinberg FM, Bearden MM, Keen CL Cocoa and chocolate flavonoids: Implications for cardiovascular health. J Acad Nutr Diet 103(2):215–223. https://doi.org/10.1053/jada.2003.50028
Afoakwa EO, Paterson A, Fowler M, Ryan A (2008) Flavor formation and character in cocoa and chocolate: a critical review. Crit Rev Food Sci Nutr 48(9):840–857. https://doi.org/10.1080/10408390701719272
Lima LJR, Almeida MH, Nout MJR, Zwietering MH (2011) Theobroma cacao L., “The Food of the Gods”: quality determinants of commercial cocoa beans, with particular reference to the impact of fermentation. Crit Rev Food Sci Nutr 51(8):731–761. https://doi.org/10.1080/10408391003799913
Colombo ML, Pinorini-Godly MT, Conti A (2012) Botany and pharmacognosy of the cacao tree. In: Conti A, Paoletti R, Poli A, Visioli F (eds) Chocolate and Health. Springer, Milan, pp 41–62
Coffee, Tea, Cocoa (2009) In: Food chemistry. Springer, Berlin, Heidelberg, pp 938–970
World Cocoa Foundation. http://www.worldcocoafoundation.org/
The International Cocoa Organization (2000–2016). https://www.icco.org/
Medeiros ML, Lannes SCdS (2009) Avaliação química de substitutos de cacau e estudo sensorial de achocolatados formulados. Food Sci Technol (Campinas) 29:247–253
Medeiros ML, Lannes SCdS (2010) Propriedades físicas de substitutos do cacau. Food Sci Technol (Campinas) 30:243–253
Tous J, Romero A, Batlle I (2013) The carob tree: botany, horticulture, and genetic resources. Horticultural reviews, vol 41. Wiley, New York, pp 385–456
Gubbuk H, Kafkas E, Guven D, Gunes E (2010) Physical and phytochemical profile of wild and domesticated carob (Ceratonia siliqua L.) genotypes. Span J Agric Res 8(4):1129–1136
Cavdarova M, Makris DP (2014) Extraction kinetics of phenolics from carob (Ceratonia siliqua L.) kibbles using environmentally benign solvents. Waste Biomass Valorization 5(5):773–779. https://doi.org/10.1007/s12649-014-9298-3
Tucker SC (1992) The developmental basis for sexual expression in Ceratonia siliqua (Leguminosae: Caesalpinioideae: Cassieae). Am J Bot 79(3):318–327. https://doi.org/10.2307/2445022
Hillcoat D, Lewis G, Verdcourt B (1980) A New Species of Ceratonia (Leguminosae-Caesalpinioideae) from Arabia and the Somali Republic. Kew Bull 35(2):261–271. https://doi.org/10.2307/4114570
Khatib S, Vaya J (2010) Chap. 17—Fig, Carob, Pistachio, and Health A2—Watson, Ronald Ross. In: Preedy VR (ed) Bioactive foods in promoting health. Academic Press, San Diego, pp 245–263
Dakia PA (2011) Chap. 35—Carob (Ceratonia siliqua L.) seeds, endosperm and germ composition, and application to health A2—Preedy, Victor R. In: Watson RR, Patel VB (eds) Nuts and seeds in health and disease prevention. Academic Press, San Diego, pp 293–299
Attokaran M (2011) Carob Pod. Natural food flavors and colorants. Wiley-Blackwell, New York, pp 117–119
Barak S, Mudgil D (2014) Locust bean gum: Processing, properties and food applications—a review. Int J Biol Macromol 66:74–80. https://doi.org/10.1016/j.ijbiomac.2014.02.017
Davies WNL (1970) The Carob Tree and Its importance in the agricultural economy of cyprus. Econ Bot 24(4):460–470
Prajapati VD, Jani GK, Moradiya NG, Randeria NP, Nagar BJ (2013) Locust bean gum: a versatile biopolymer. Carbohyd Polym 94(2):814–821. https://doi.org/10.1016/j.carbpol.2013.01.086
Nasar-Abbas SM, e-Huma Z, Vu T-H, Khan MK, Esbenshade H, Jayasena V (2016) Carob kibble: a bioactive-rich food ingredient. Compr Rev Food Sci Food Saf 15(1):63–72. https://doi.org/10.1111/1541-4337.12177
Goulas V, Stylos E, Chatziathanasiadou M, Mavromoustakos T, Tzakos A (2016) Functional components of carob fruit: linking the chemical and biological space. Int J Mol Sci 17(11):1875
Benchikh Y, Louaileche H, George B, Merlin A (2014) Changes in bioactive phytochemical content and in vitro antioxidant activity of carob (Ceratonia siliqua L.) as influenced by fruit ripening. Ind Crops Prod 60:298–303. https://doi.org/10.1016/j.indcrop.2014.05.048
Ortega N, Macià A, Romero M-P, Trullols E, Morello J-R, Anglès N, Motilva M-J (2009) Rapid determination of phenolic compounds and alkaloids of carob flour by improved liquid chromatography tandem mass spectrometry. J Agric Food Chem 57(16):7239–7244. https://doi.org/10.1021/jf901635s
Custódio L, Fernandes E, Escapa AL, Fajardo A, Aligué R, Alberício F, Neng NR, Nogueira JMF, Romano A (2011) Antioxidant and cytotoxic activities of carob tree fruit pulps are strongly influenced by gender and cultivar. J Agric Food Chem 59(13):7005–7012. https://doi.org/10.1021/jf200838f
Food and Agricultural Organization of the United Nations (FAO) (2014). http://www.fao.org/
Barracosa P, Osório J, Cravador A (2007) Evaluation of fruit and seed diversity and characterization of carob (Ceratonia siliqua L.) cultivars in Algarve region. Sci Hortic 114(4):250–257. https://doi.org/10.1016/j.scienta.2007.06.024
Cocoa bean processing (2000) In: Beckett ST (ed) The Science of Chocolate. The Royal Society of Chemistry, London, pp 31–48
Bernaert H, Blondeel I, Allegaert L, Lohmueller T (2012) Industrial Treatment of Cocoa in Chocolate Production: Health Implications. In: Conti A, Paoletti R, Poli A, Visioli F (eds) Chocolate and Health. Springer, Milan, pp 17–31
Afoakwa EO (2000) Chocolate and cocoa, flavor and quality. Kirk-Othmer encyclopedia of chemical technology. Wiley, New York. https://doi.org/10.1002/0471238961.chocafoa.a01
Afoakwa EO (2010) Industrial chocolate manufacture–processes and factors influencing quality. Chocolate Science and Technology. Wiley, New York, pp 35–57
Oracz J, Nebesny E (2016) Antioxidant properties of cocoa beans (Theobroma cacao L.): influence of cultivar and roasting conditions. Int J Food Prop 19(6):1242–1258. https://doi.org/10.1080/10942912.2015.1071840
Tamanna N, Mahmood N (2015) Food processing and maillard reaction products: effect on human health and nutrition. Int J Food Sci. https://doi.org/10.1155/2015/526762
Owusu M, Petersen MA, Heimdal H (2012) Effect of fermentation method, roasting and conching conditions on the aroma volatiles of dark chocolate. J Food Process Preserv 36(5):446–456. https://doi.org/10.1111/j.1745-4549.2011.00602.x
Giacometti J, Jolić SM, Josić D (2015) Chap. 73—cocoa processing and impact on composition A2—Preedy, Victor. Processing and impact on active components in food. Academic Press, San Diego, pp 605–612
Dand R (2011) 9-Cocoa bean processing and the manufacture of chocolate. The International Cocoa Trade (Third edition). Woodhead Publishing, Cambridge, pp 268–289
Afoakwa EO (2010) The chemistry of flavour development during cocoa processing and chocolate manufacture. Chocolate Science and Technology. Wiley, New York, pp 58–72
Musa Özcan M, Arslan D, Gökçalik H (2007) Some compositional properties and mineral contents of carob (Ceratonia siliqua) fruit, flour and syrup. Int J Food Sci Nutr 58(8):652–658. https://doi.org/10.1080/09637480701395549
Yousif AK, Alghzawi HM (2000) Processing and characterization of carob powder. Food Chem 69(3):283–287. https://doi.org/10.1016/S0308-8146(99)00265-4
Şahin H, Topuz A, Pischetsrieder M, Özdemir F (2009) Effect of roasting process on phenolic, antioxidant and browning properties of carob powder. Eur Food Res Technol 230(1):155. https://doi.org/10.1007/s00217-009-1152-7
Vitali Čepo D, Mornar A, Nigović B, Kremer D, Radanović D, Vedrina Dragojević I (2014) Optimization of roasting conditions as an useful approach for increasing antioxidant activity of carob powder. LWT Food Sci Technol 58(2):578–586. https://doi.org/10.1016/j.lwt.2014.04.004
Srour N, Daroub H, Toufeili I, Olabi A (2016) Developing a carob-based milk beverage using different varieties of carob pods and two roasting treatments and assessing their effect on quality characteristics. J Sci Food Agric 96(9):3047–3057. https://doi.org/10.1002/jsfa.7476
Cantalejo MJ (1997) Effects of roasting temperature on the aroma components of carob (Ceratonia siliqua L.). J Agric Food Chem 45(4):1345–1350. https://doi.org/10.1021/jf960468e
Fadel HHM, Abdel Mageed MA, Abdel Samad AKME., Lotfy SN (2006) Cocoa substitute: evaluation of sensory qualities and flavour stability. Eur Food Res Technol 223(1):125–131. https://doi.org/10.1007/s00217-005-0162-3
Arrighi WJ, Hartman TG, Ho CT (1997) Carob bean aroma dependence on roasting conditions. Perfum Flavor 22(1):31–41
Spinella F, Rosanò L, Di Castro V, Decandia S, Albini A, Nicotra MR, Natali PG, Bagnato A (2006) Green tea polyphenol epigallocatechin-3-gallate inhibits the endothelin axis and downstream signaling pathways in ovarian carcinoma. Mol Cancer Ther 5(6):1483
Paul B, Hayes CS, Kim A, Athar M, Gilmour SK (2005) Elevated polyamines lead to selective induction of apoptosis and inhibition of tumorigenesis by (–)-epigallocatechin-3-gallate (EGCG) in ODC/Ras transgenic mice. Carcinogenesis 26(1):119–124. https://doi.org/10.1093/carcin/bgh281
Chuang S-E, Cheng A-L, Lin J-K, Kuo M-L (2000) Inhibition by curcumin of diethylnitrosamine-induced hepatic hyperplasia, inflammation, cellular gene products and cell-cycle-related proteins in rats. Food Chem Toxicol 38(11):991–995. https://doi.org/10.1016/S0278-6915(00)00101-0
Dolara P, Luceri C, Filippo CD, Femia AP, Giovannelli L, Caderni G, Cecchini C, Silvi S, Orpianesi C, Cresci A (2005) Red wine polyphenols influence carcinogenesis, intestinal microflora, oxidative damage and gene expression profiles of colonic mucosa in F344 rats. Mutat Res/Fundam Mol Mech Mutagen 591(1–2):237–246. https://doi.org/10.1016/j.mrfmmm.2005.04.022
Chen Y, Tseng S-H, Lai H-S, Chen W-J (2004) Resveratrol-induced cellular apoptosis and cell cycle arrest in neuroblastoma cells and antitumor effects on neuroblastoma in mice. Surgery 136(1):57–66. https://doi.org/10.1016/j.surg.2004.01.017
Harper CE, Patel BB, Wang J, Eltoum IA, Lamartiniere CA (2007) Epigallocatechin-3-Gallate suppresses early stage, but not late stage prostate cancer in TRAMP mice: Mechanisms of action. Prostate 67(14):1576–1589. https://doi.org/10.1002/pros.20643
Mink PJ, Scrafford CG, Barraj LM, Harnack L, Hong C-P, Nettleton JA, Jacobs DR (2007) Flavonoid intake and cardiovascular disease mortality: a prospective study in postmenopausal women. Am J Clin Nutr 85(3):895–909
Ghosh D, Scheepens A (2009) Vascular action of polyphenols. Mol Nutr Food Res 53(3):322–331. https://doi.org/10.1002/mnfr.200800182
Kuriyama S, Shimazu T, Ohmori K et al (2006) Green tea consumption and mortality due to cardiovascular disease, cancer, and all causes in japan: The ohsaki study. JAMA 296(10):1255–1265. https://doi.org/10.1001/jama.296.10.1255
Akhlaghi M, Bandy B (2012) Preconditioning and acute effects of flavonoids in protecting cardiomyocytes from oxidative cell death. Oxid Med Cell Longev 2012:9. https://doi.org/10.1155/2012/782321
Brückner M, Westphal S, Domschke W, Kucharzik T, Lügering A (2012) Green tea polyphenol epigallocatechin-3-gallate shows therapeutic antioxidative effects in a murine model of colitis. J Crohn’s Colitis 6(2):226–235. https://doi.org/10.1016/j.crohns.2011.08.012
Wang J, Ferruzzi MG, Ho L, Blount J, Janle EM, Gong B, Pan Y, Gowda GAN, Raftery D, Arrieta-Cruz I, Sharma V, Cooper B, Lobo J, Simon JE, Zhang C, Cheng A, Qian X, Ono K, Teplow DB, Pavlides C, Dixon RA, Pasinetti GM (2012) Brain-targeted proanthocyanidin metabolites for Alzheimer’s disease treatment. J Neurosci 32(15):5144
Huang T-C, Lu K-T, Wo Y-YP, Wu Y-J, Yang Y-L (2011) Resveratrol protects rats from Aβ-induced neurotoxicity by the reduction of iNOS expression and lipid peroxidation. PLoS One 6(12):e29102. https://doi.org/10.1371/journal.pone.0029102
Matissek R (1997) Evaluation of xanthine derivatives in chocolate—nutritional and chemical aspects. Zeitschrift für Lebensmitteluntersuchung und -Forschung A 205(3):175–184
Bravo L (1998) Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance. Nutr Rev 56(11):317–333. https://doi.org/10.1111/j.1753-4887.1998.tb01670.x
Tomas-Barberán FA, Cienfuegos-Jovellanos E, Marín A, Muguerza B, Gil-Izquierdo A, Cerdá B, Zafrilla P, Morillas J, Mulero J, Ibarra A, Pasamar MA, Ramón D, Espín JC (2007) A new process to develop a cocoa powder with higher flavonoid monomer content and enhanced bioavailability in healthy humans. J Agric Food Chem 55(10):3926–3935. https://doi.org/10.1021/jf070121j
Afoakwa EO (2016) World cocoa production, processing and chocolate consumption pattern. In: Chocolate science and technology. Wiley, Chichester, pp 17–48. https://doi.org/10.1002/9781118913758.ch2
Avallone R, Plessi M, Baraldi M, Monzani A (1997) Determination of chemical composition of carob (Ceratonia siliqua): protein, fat, carbohydrates, and tannins. J Food Compos Anal 10(2):166–172. https://doi.org/10.1006/jfca.1997.0528
Shawakfeh KQ, Ereifej KI (2005) pod characteristics of two Ceratonia siliqua l. varieties from Jordan. Ital J Food Sci 17(2):187–194
Sigge GO, lipumbu L, Britz TJ (2011) Proximate composition of carob cultivars growing in South Africa. S Afr J Plant Soil 28(1):17–22. https://doi.org/10.1080/02571862.2011.10640008
Khlifa M, Kitane AB,S (2013) Determination of chemical composition of carob pod (Ceratonia siliqua. L.) and its morphological study. J Mater Environ Sci 4(3):348–353
Huma Z-E, Jayasena V, Nasar-Abbas SM, Imran M, Khan MK Process optimization of polyphenol extraction from carob (Ceratonia siliqua) kibbles using microwave-assisted technique. J Food Process Preserv. https://doi.org/10.1111/jfpp.13450
Lattanzio V, Kroon PA, Quideau S, Treutter D (2009) Plant phenolics—secondary metabolites with diverse functions. In: Daayf F, Lattanzio V (eds) Recent advances in polyphenol research. Wiley-Blackwell, Oxford, pp 1–35. https://doi.org/10.1002/9781444302400.ch1
Manach C, Scalbert A, Morand C, Rémésy C, Jiménez L (2004) Polyphenols: food sources and bioavailability. Am J Clin Nutr 79(5):727–747
Wollgast J, Anklam E (2000) Review on polyphenols in Theobroma cacao: changes in composition during the manufacture of chocolate and methodology for identification and quantification. Food Res Int 33(6):423–447. https://doi.org/10.1016/S0963-9969(00)00068-5
Afoakwa EO-A EO, Budu AS, Mensah-Brown H, Takrama JF (2015) Roasting effects on phenolic content and free-radical scavenging activities of pulp preconditioned and fermented cocoa (Theobroma cacao) beans. Afr J Food Agric Nutr Dev 15(1):9635–9649
Rusconi M, Conti A (2010) Theobroma cacao L., the food of the gods: a scientific approach beyond myths and claims. Pharmacol Res 61(1):5–13. https://doi.org/10.1016/j.phrs.2009.08.008
Lamuela-Raventós RM, Romero-Pérez AI, Andrés-Lacueva C, Tornero A (2005) Review: health effects of cocoa flavonoids. Food Sci Technol Int 11(3):159–176. https://doi.org/10.1177/1082013205054498
Lau-Cam CA (2013) The Absorption, Metabolism, and Pharmacokinetics of Chocolate Polyphenols. In: Watson RR, Preedy VR, Zibadi S (eds) Chocolate in Health and Nutrition. Humana Press, Totowa, pp 201–246
And I, Recio I, Giner MC, Rios RM, (2012) Cocoa Polyphenols and Their Potential Benefits for Human Health. Oxidat Med Cell Longev 2012:23. https://doi.org/10.1155/2012/906252
Ortega N, Romero M-P, Macià A, Reguant J, Anglès N, Morelló J-R, Motilva M-J (2008) Obtention and characterization of phenolic extracts from different cocoa sources. J Agric Food Chem 56(20):9621–9627. https://doi.org/10.1021/jf8014415
Jinap S, Jamilah B, Nazamid S (2004) Sensory properties of cocoa liquor as affected by polyphenol concentration and duration of roasting. Food Qual Prefer 15(5):403–409. https://doi.org/10.1016/S0950-3293(03)00097-1
Papagiannopoulos M, Wollseifen HR, Mellenthin A, Haber B, Galensa R (2004) Identification and quantification of polyphenols in carob fruits (Ceratonia siliqua L.) and derived products by HPLC-UV-ESI/MSn. J Agric Food Chem 52(12):3784–3791. https://doi.org/10.1021/jf030660y
Roseiro LB, Duarte LC, Oliveira DL, Roque R, Bernardo-Gil MG, Martins AI, Sepúlveda C, Almeida J, Meireles M, Gírio FM, Rauter AP (2013) Supercritical, ultrasound and conventional extracts from carob (Ceratonia siliqua L.) biomass: Effect on the phenolic profile and antiproliferative activity. Ind Crops Prod 47:132–138. https://doi.org/10.1016/j.indcrop.2013.02.026
Rakib E, Chicha H, Abouricha S, Alaoui M, Bouli AA, Hansali M, Owen RW (2010) Determination of phenolic composition of carob pods grown in different regions of Morocco. J Nat Prod 3:134–140
Custódio L, Escapa AL, Fernandes E, Fajardo A, Aligué R, Alberício F, Neng N, Nogueira JMF, Romano A (2011) Phytochemical profile, antioxidant and cytotoxic activities of the carob tree (Ceratonia siliqua L.) germ flour extracts. Plant Foods Hum Nutr 66(1):78–84. https://doi.org/10.1007/s11130-011-0214-8
Corsi L, Avallone R, Cosenza F, Farina F, Baraldi C, Baraldi M (2002) Antiproliferative effects of Ceratonia siliqua L. on mouse hepatocellular carcinoma cell line. Fitoterapia 73(7–8):674–684. https://doi.org/10.1016/S0367-326X(02)00227-7
Owen RW, Haubner R, Hull WE, Erben G, Spiegelhalder B, Bartsch H, Haber B (2003) Isolation and structure elucidation of the major individual polyphenols in carob fibre. Food Chem Toxicol 41(12):1727–1738. https://doi.org/10.1016/S0278-6915(03)00200-X
Monteiro J, Alves M, Oliveira P, Silva B (2016) Structure-bioactivity relationships of methylxanthines: trying to make sense of all the promises and the drawbacks. Molecules 21(8):974
Franco R, Oñatibia-Astibia A, Martínez-Pinilla E (2013) Health benefits of methylxanthines in cacao and chocolate. Nutrients 5(10):4159–4173. https://doi.org/10.3390/nu5104159
Jahanfar S, Jaafar SH (2015) Effects of restricted caffeine intake by mother on fetal, neonatal and pregnancy outcomes. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD006965.pub4
Barr HM, Streissguth AP (1991) Caffeine use during pregnancy and child outcome: a 7-year prospective study. Neurotoxicol Teratol 13(4):441–448. https://doi.org/10.1016/0892-0362(91)90093-C
Gans JH (1984) Comparative toxicities of dietary caffeine and theobromine in the rat. Food Chem Toxicol 22(5):365–369. https://doi.org/10.1016/0278-6915(84)90365-X
Smit HJ (2011) Theobromine and the pharmacology of cocoa. In: Methylxanthines. Handbook of experimental pharmacology. Springer, Berlin, Heidelberg, pp 201–234. https://doi.org/10.1007/978-3-642-13443-2_7
Glade MJ (2010) Caffeine—not just a stimulant. Nutrition 26(10):932–938. https://doi.org/10.1016/j.nut.2010.08.004
Stavric B (1988) Methylxanthines: Toxicity to humans. 2. Caffeine. Food Chem Toxicol 26(7):645–662. https://doi.org/10.1016/0278-6915(88)90236-0
Ho VTT, Zhao J, Fleet G (2014) Yeasts are essential for cocoa bean fermentation. Int J Food Microbiol 174:72–87. https://doi.org/10.1016/j.ijfoodmicro.2013.12.014
Biehl B, Ziegleder G (2003) COCOA | chemistry of processing. In: Caballero B (ed) Encyclopedia of food sciences and nutrition, 2nd edn. Academic Press, Oxford, pp 1436–1448. https://doi.org/10.1016/B0-12-227055-X/00261-3
Serra Bonvehí J, Ventura Coll F (2000) Evaluation of purine alkaloids and diketopiperazines contents in processed cocoa powder. Eur Food Res Technol 210(3):189–195. https://doi.org/10.1007/PL00005510
Craig WJ, Nguyen TT (1984) Caffeine and theobromine levels in cocoa and carob products. J Food Sci 49(1):302–303. https://doi.org/10.1111/j.1365-2621.1984.tb13737.x
Salem ME, FAO (2012) Substituting of cacao by carob pod powder in milk chocolate manufacturing. Aust J Basic Appl Sci 6(3):572–578
Voigt J, Biehl B, Wazir SKS (1993) The major seed proteins of Theobroma cacao L. Food Chem 47(2):145–151. https://doi.org/10.1016/0308-8146(93)90236-9
Abecia-Soria L, Pezoa-García NH, Amaya-Farfan J (2005) Soluble albumin and biological value of protein in cocoa (Theobroma cacao L.) beans as a function of roasting time. J Food Sci 70(4):S294-S298. https://doi.org/10.1111/j.1365-2621.2005.tb07205.x
Voigt J, Biehl B, Heinrichs H, Kamaruddin S, Marsoner GG, Hugi A (1994) In-vitro formation of cocoa-specific aroma precursors: aroma-related peptides generated from cocoa-seed protein by co-operation of an aspartic endoprotease and a carboxypeptidase. Food Chem 49(2):173–180. https://doi.org/10.1016/0308-8146(94)90155-4
Wang Y, Belton PS, Bridon H, Garanger E, Wellner N, Parker ML, Grant A, Feillet P, Noel TR (2001) Physicochemical studies of Caroubin: a gluten-like protein. J Agric Food Chem 49(7):3414–3419. https://doi.org/10.1021/jf010076u
Tsatsaragkou K, Yiannopoulos S, Kontogiorgi A, Poulli E, Krokida M, Mandala I (2012) Mathematical approach of structural and textural properties of gluten free bread enriched with carob flour. J Cereal Sci 56(3):603–609. https://doi.org/10.1016/j.jcs.2012.07.007
Tsatsaragkou K, Yiannopoulos S, Kontogiorgi A, Poulli E, Krokida M, Mandala I (2014) Effect of carob flour addition on the rheological properties of gluten-free breads. Food Bioprocess Technol 7(3):868–876. https://doi.org/10.1007/s11947-013-1104-x
Adeyeye EI, Akinyeye RO, Ogunlade I, Olaofe O, Boluwade JO (2010) Effect of farm and industrial processing on the amino acid profile of cocoa beans. Food Chem 118(2):357–363. https://doi.org/10.1016/j.foodchem.2009.04.127
Ayaz FA, Torun H, Ayaz S, Correia PJ, Alaiz M, Sanz C, GrÚZ J, Strnad M (2007) Determination of chemical composition of anatolian carob pod (Ceratonia siliqua l.): sugars, amino and organic acids, minerals and phenolic compounds. J Food Qual 30(6):1040–1055. https://doi.org/10.1111/j.1745-4557.2007.00176.x
Reineccius GA, Andersen DA, Kavanagh TE, Keeney PG (1972) Identification and quantification of the free sugars in cocoa beans. J Agric Food Chem 20(2):199–202. https://doi.org/10.1021/jf60180a033
Redgwell RJ, Trovato V, Curti D (2003) Cocoa bean carbohydrates: roasting-induced changes and polymer interactions. Food Chem 80(4):511–516. https://doi.org/10.1016/S0308-8146(02)00320-5
Biner B, Gubbuk H, Karhan M, Aksu M, Pekmezci M (2007) Sugar profiles of the pods of cultivated and wild types of carob bean (Ceratonia siliqua L.) in Turkey. Food Chem 100(4):1453–1455. https://doi.org/10.1016/j.foodchem.2005.11.037
Ruiz-Aceituno L, Rodríguez-Sánchez S, Ruiz-Matute AI, Ramos L, Soria AC, Sanz ML (2013) Optimisation of a biotechnological procedure for selective fractionation of bioactive inositols in edible legume extracts. J Sci Food Agric 93(11):2797–2803. https://doi.org/10.1002/jsfa.6103
Cui SW, Nie S, Roberts KT (2011) 4.42—Functional properties of dietary fiber. In: Moo-Young M (ed) Comprehensive biotechnology, 2nd edn. Academic Press, Burlington, pp 517–525. https://doi.org/10.1016/B978-0-08-088504-9.00315-9
Cardador-Martínez A, Espino-Sevilla MT, del Campo STM, Alonzo-Macías M (2017) Dietary fiber as food additive: present and future. In: Hosseinian F, Oomah BD, Campos-Vega R (eds) Dietary fiber functionality in food and nutraceuticals. Wiley, New York, pp 77–94. https://doi.org/10.1002/9781119138105.ch4
Gao Y, Yue J (2012) Dietary fiber and human health. In: Yu L, Tsao R, Shahidi F (eds) Cereals and pulses. Wiley-Blackwell, Oxford, pp 261–271. https://doi.org/10.1002/9781118229415.ch18
Thebaudin JY, Lefebvre AC, Harrington M, Bourgeois CM (1997) Dietary fibres: nutritional and technological interest. Trends Food Sci Technol 8(2):41–48. https://doi.org/10.1016/S0924-2244(97)01007-8
Cui SW, Roberts KT (2009) CHAPTER 13—dietary fiber: fulfilling the promise of added-value formulations A2—Kasapis, Stefan. In: Norton IT, Ubbink JB (eds) Modern biopolymer science. Academic Press, San Diego, pp 399–448
Slavin J (2013) 3—health aspects of dietary fibre A2—Delcour, Jan A. In: Poutanen K (ed) Fibre-rich and wholegrain foods. Woodhead Publishing, Sawston, pp 61–75
Redgwell R, Trovato V, Merinat S, Curti D, Hediger S, Manez A (2003) Dietary fibre in cocoa shell: characterisation of component polysaccharides. Food Chem 81(1):103–112. https://doi.org/10.1016/S0308-8146(02)00385-0
Haber B (2002) Carob fiber benefits and applications. Cereal Foods World 47(8):365–369
Saura-Calixto F (1988) Effect of condensed tannins in the analysis of dietary fiber in carob pods. J Food Sci 53(6):1769–1771. https://doi.org/10.1111/j.1365-2621.1988.tb07838.x
Dea ICM, Morrison A (1975) Chemistry and interactions of seed galactomannans. Adv Carbohydr Chem Biochem 31:241–312. https://doi.org/10.1016/S0065-2318(08)60298-X
Andrea T, Borchers CLK, Sandra M, Hannum, Eric Gershwin M (2000) Cocoa and chocolate: composition, bioavailability, and health implications. J Med Food 3(2):77–105
Lehrian DW, Keeney PG, Butler DR (1980) Triglyceride characteristics of cocoa butter from cacao fruit matured in a microclimate of elevated temperature1. J Am Oil Chem Soc 57(2):66–69. https://doi.org/10.1007/BF02674362
Lairon D (1997) Dietary fatty acids and arteriosclerosis. Biomed Pharmacother 51(8):333–336. https://doi.org/10.1016/S0753-3322(97)88051-1
Grundy SM (1994) Influence of stearic acid on cholesterol metabolism relative to other long-chain fatty acids. Am J Clin Nutr 60(6):986S-990S
Gharibzahedi SMT, Jafari SM (2017) The importance of minerals in human nutrition: Bioavailability, food fortification, processing effects and nanoencapsulation. Trends Food Sci Technol 62:119–132. https://doi.org/10.1016/j.tifs.2017.02.017
Campbell I (2017) Macronutrients, minerals, vitamins and energy. Anaesth Intensive Care Med 18(3):141–146. https://doi.org/10.1016/j.mpaic.2016.11.014
Cole L, Kramer PR (2016) Chapter 5.2—Vitamins and minerals. In: Human physiology, biochemistry and basic medicine. Academic Press, Boston, pp 165–175. https://doi.org/10.1016/B978-0-12-803699-0.00037-2
Singh G, Arora S, Sharma GS, Sindhu JS, Kansal VK, Sangwan RB (2007) Heat stability and calcium bioavailability of calcium-fortified milk. LWT Food Sci Technol 40(4):625–631. https://doi.org/10.1016/j.lwt.2006.03.009
Afoakwa EO, Quao J, Takrama J, Budu AS, Saalia FK (2013) Chemical composition and physical quality characteristics of Ghanaian cocoa beans as affected by pulp pre-conditioning and fermentation. J Food Sci Technol 50(6):1097–1105. https://doi.org/10.1007/s13197-011-0446-5
Torres-Moreno M, Torrescasana E, Salas-Salvadó J, Blanch C (2015) Nutritional composition and fatty acids profile in cocoa beans and chocolates with different geographical origin and processing conditions. Food Chemistry 166 (Supplement C):125–132. https://doi.org/10.1016/j.foodchem.2014.05.141
Chatterjee S (2016) Chapter two—oxidative stress, inflammation, and disease A2—Dziubla, Thomas. In: Butterfield DA (ed) Oxidative stress and biomaterials. Academic Press, New York, pp 35–58
Lushchak VI (2014) Free radicals, reactive oxygen species, oxidative stress and its classification. Chem Biol Interact 224:164–175. https://doi.org/10.1016/j.cbi.2014.10.016
Pham-Huy LA, He H, Pham-Huy C (2008) Free radicals, antioxidants in disease and health. Int J Biomed Sci 4(2):89–96
Circu ML, Aw TY (2010) Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic Biol Med 48(6):749–762. https://doi.org/10.1016/j.freeradbiomed.2009.12.022
Milatovic D, Zaja-Milatovic S, Gupta RC (2016) In: Nutraceuticals Chap. 29—oxidative stress and excitotoxicity: antioxidants from nutraceuticals. Academic Press, Boston, pp 401–413
Scalbert A, Manach C, Morand C, Rémésy C, Jiménez L (2005) Dietary polyphenols and the prevention of diseases. Crit Rev Food Sci Nutr 45(4):287–306. https://doi.org/10.1080/1040869059096
Loffredo L, Violi F (2012) Polyphenolic antioxidants and health. In: Conti A, Paoletti R, Poli A, Visioli F (eds) Chocolate and health. Springer Milan, Milano, pp 77–85
Makris DKP (2004) Carob pods (Ceratonia siliqua L.) as a source of polyphenolic antioxidants. Food Technol Biotechnol 42(2):105–108
Kumazawa S, Taniguchi M, Suzuki Y, Shimura M, Kwon M-S, Nakayama T (2002) Antioxidant activity of polyphenols in carob pods. J Agric Food Chem 50(2):373–377. https://doi.org/10.1021/jf010938r
Jalil A, Ismail A (2008) Polyphenols in cocoa and cocoa products: is there a link between antioxidant properties and health?. Molecules 13(9):2190
Othman A, Ismail A, Abdul Ghani N, Adenan I (2007) Antioxidant capacity and phenolic content of cocoa beans. Food Chem 100(4):1523–1530. https://doi.org/10.1016/j.foodchem.2005.12.021
Martín MA, Ramos S (2016) Cocoa polyphenols in oxidative stress: potential health implications. J Funct Foods 27:570–588. https://doi.org/10.1016/j.jff.2016.10.008
Brglez Mojzer E, Knez Hrnčič M, Škerget M, Knez Ž, Bren U (2016) Polyphenols: extraction methods, antioxidative action, bioavailability and anticarcinogenic effects. Molecules 21(7):901
Sebai HSA, Chehimi L, Rtibi K, Amri M, El-Benna J, Sakly M (2013) In vitro and in vivo antioxidant properties of Tunisian carob (Ceratonia siliqua L.). J Med Plants Res 7(2):85–90
<bib id="bib151">Zulim Botega D, Bastida S, Marmesat S, Pérez-Olleros L, Ruiz-Roso B, Sánchez-Muniz FJ (2009) Carob Fruit Polyphenols Reduce Tocopherol Loss, Triacylglycerol Polymerization and Oxidation in Heated Sunflower Oil. J Am Oil Chem Soc 86(5):419–425. https://doi.org/10.1007/s11746-009-1368-5</bib>
Bastida S, Sánchez-Muniz FJ, Olivero R, Pérez-Olleros L, Ruiz-Roso B, Jiménez-Colmenero F (2009) Antioxidant activity of Carob fruit extracts in cooked pork meat systems during chilled and frozen storage. Food Chem 116(3):748–754. https://doi.org/10.1016/j.foodchem.2009.03.034
Sjögren B, Bigert C, Gustavsson P (2015) Chap. 16 - Cardiovascular Disease A2 - Nordberg, Gunnar F. In: Fowler BA, Nordberg M (eds) Handbook on the Toxicology of Metals (Fourth Edition). Academic Press, San Diego, pp 313–331
Hoffman R, Gerber M, Hoffman R, Gerber M (2011) Cardiovascular Diseases. The Mediterranean Diet, John Wiley & Sons, Ltd., pp 258–292
Cole L, Kramer PR (2016) Chap. 6.4 - Cardiovascular Disease. Human Physiology, Biochemistry and Basic Medicine. Academic Press, Boston, pp 201–204
Ross R (1999) Atherosclerosis—an inflammatory disease. N Engl J Med 340(2):115–126. https://doi.org/10.1056/NEJM199901143400207
Hansson GK, Hamsten A (2012) 70 - Atherosclerosis, Thrombosis, and Vascular Biology A2—Goldman, Lee. In: Schafer AI (ed) Goldman’s Cecil Medicine (Twenty-Fourth Edition). W.B. Saunders, Philadelphia, pp 409–412
Quiñones M, Miguel M, Aleixandre A (2013) Beneficial effects of polyphenols on cardiovascular disease. Pharmacol Res 68(1):125–131. https://doi.org/10.1016/j.phrs.2012.10.018
Vita JA (2005) Polyphenols and cardiovascular disease: effects on endothelial and platelet function. Am J Clin Nutr 81(1):292S-297S
Habauzit V, Morand C (2012) Evidence for a protective effect of polyphenols-containing foods on cardiovascular health: an update for clinicians. Ther Adv Chron Dis 3(2):87–106. https://doi.org/10.1177/2040622311430006
Osakabe N, Baba S, Yasuda A, Iwamoto T, Kamiyama M, Tokunaga T, Kondo K (2004) Dose-response study of daily cocoa intake on the oxidative susceptibility of low-density lipoprotein in healthy human volunteers. J Health Sci 50(6):679–684. https://doi.org/10.1248/jhs.50.679
Baba S, Osakabe N, Kato Y, Natsume M, Yasuda A, Kido T, Fukuda K, Muto Y, Kondo K (2007) Continuous intake of polyphenolic compounds containing cocoa powder reduces LDL oxidative susceptibility and has beneficial effects on plasma HDL-cholesterol concentrations in humans. Am J Clin Nutr 85(3):709–717
Kurosawa T, Itoh F, Nozaki A, Nakano Y, Katsuda S-i, Osakabe N, Tsubone H, Kondo K, Itakura H (2005) Suppressive Effect of Cocoa Powder on Atherosclerosis in Kurosawa and Kusanagi-hypercholesterolemic Rabbits. J Atheroscler Thromb 12(1):20–28. https://doi.org/10.5551/jat.12.20
Allgrove J, Davison G (2014) Chap. 19 - Dark Chocolate/Cocoa Polyphenols and Oxidative Stress. Polyphenols in Human Health and Disease. Academic Press, San Diego, pp 241–251
Zunft HJF, Lüder W, Harde A, Haber B, Graubaum HJ, Gruenwald J (2001) Carob pulp preparation for treatment of hypercholesterolemia. Adv Ther 18(5):230–236. https://doi.org/10.1007/BF02853169
Zunft HJF, Lüder W, Harde A, Haber B, Graubaum HJ, Koebnick C, Grünwald J (2003) Carob pulp preparation rich ininsoluble fibre lowers total and LDL cholesterol inhypercholesterolemic patients. Eur J Nutr 42(5):235–242. https://doi.org/10.1007/s00394-003-0438-y
Ruiz-Roso B, Quintela JC, de la Fuente E, Haya J, Pérez-Olleros L (2010) Insoluble carob fiber rich in polyphenols lowers total and LDL cholesterol in hypercholesterolemic sujects. Plant Foods Hum Nutr 65(1):50–56. https://doi.org/10.1007/s11130-009-0153-9
Valero-Muñoz M, Martín-Fernández B, Ballesteros S, Lahera V, de las Heras N (2014) Carob pod insoluble fiber exerts anti-atherosclerotic effects in rabbits through Sirtuin-1 and Peroxisome proliferator-Activated Receptor-γ Coactivator-1α. J Nutr 144(9):1378–1384. https://doi.org/10.3945/jn.114.196113
Hassanein KMA, Youssef MKE, Ali HM, El-Manfaloty MM (2015) The influence of carob powder on lipid profile and histopathology of some organs in rats. Comp Clin Pathol 24(6):1509–1513. https://doi.org/10.1007/s00580-015-2108-x
Würsch P (1979) Influence of Tannin-rich carob pod fiber on the cholesterol metabolism in the rat. J Nutr 109(4):685–692
Hoffman R, Gerber M, Hoffman R, Gerber M (2011) Cancers. The Mediterranean Diet. Wiley, New York, pp 293–342
Moadel AB, Harris MS (2007) Cancer. Comprehensive Handbook of Clinical Health Psychology. Wiley, New York, pp 153–178
Ramos S Effects of dietary flavonoids on apoptotic pathways related to cancer chemoprevention. J Nutr Biochem 18(7):427–442. https://doi.org/10.1016/j.jnutbio.2006.11.004
Martin MA, Goya L, Ramos S (2013) Potential for preventive effects of cocoa and cocoa polyphenols in cancer. Food Chem Toxicol 56:336–351. https://doi.org/10.1016/j.fct.2013.02.020
Ramos S (2008) Cancer chemoprevention and chemotherapy: dietary polyphenols and signalling pathways. Mol Nutr Food Res 52(5):507–526. https://doi.org/10.1002/mnfr.200700326
Manson MM (2003) Cancer prevention—the potential for diet to modulate molecular signalling. Trends Mol Med 9(1):11–18. https://doi.org/10.1016/S1471-4914(02)00002-3
Spadafranca A, Martinez Conesa C, Sirini S, Testolin G (2010) Effect of dark chocolate on plasma epicatechin levels, DNA resistance to oxidative stress and total antioxidant activity in healthy subjects. Br J Nutr 103(7):1008–1014
Lee KW, Kundu JK, Kim SO, Chun K-S, Lee HJ, Surh Y-J (2006) Cocoa Polyphenols Inhibit Phorbol Ester-Induced Superoxide Anion Formation in Cultured HL-60 Cells and Expression of Cyclooxygenase-2 and Activation of NF-κB and MAPKs in Mouse Skin In Vivo. J Nutr 136(5):1150–1155
Kim J, Son J, Jung S, Kang N, Lee C, Lee K, Lee H (2010) Cocoa polyphenols suppress TNF-α-induced vascular endothelial growth factor expression by inhibiting phosphoinositide 3-kinase (PI3K) and mitogen-activated protein kinase kinase-1 (MEK1) activities in mouse epidermal cells. Br J Nutr 104(7):957–964
Kang NJ, Lee KW, Lee DE, Rogozin EA, Bode AM, Lee HJ, Dong Z (2008) Cocoa procyanidins suppress transformation by inhibiting mitogen-activated protein kinase kinase. J Biol Chem 283(30):20664–20673. https://doi.org/10.1074/jbc.M800263200
Yamagishi M, Natsume M, Osakabe N, Nakamura H, Furukawa F, Imazawa T, Nishikawa A, Hirose M (2002) Effects of cacao liquor proanthocyanidins on PhIP-induced mutagenesis in vitro, and in vivo mammary and pancreatic tumorigenesis in female Sprague–Dawley rats. Cancer Lett 185(2):123–130. https://doi.org/10.1016/S0304-3835(02)00276-8
Yamagishi M, Natsume M, Osakabe N, Okazaki K, Furukawa F, Imazawa T, Nishikawa A, Hirose M (2003) Chemoprevention of lung carcinogenesis by cacao liquor proanthocyanidins in a male rat multi-organ carcinogenesis model. Cancer Lett 191(1):49–57. https://doi.org/10.1016/S0304-3835(02)00629-8
Bisson J-F, Guardia-Llorens M-A, Hidalgo S, Rozan P, Messaoudi M (2008) Protective effect of Acticoa powder, a cocoa polyphenolic extract, on prostate carcinogenesis in Wistar–Unilever rats. Eur J Cancer Prev 17(1):54–61. https://doi.org/10.1097/CEJ.0b013e3280145b33
Papież MA, Baran J, Bukowska-Straková K, Krośniak M (2011) Epicatechin administration leads to necrotic cell death of rat leukaemia promyelocytes in vivo. In Vivo 25(1):29–34
Granado-Serrano AB, Martín MA, Bravo L, Goya L, Ramos S (2009) A diet rich in cocoa attenuates N-nitrosodiethylamine-induced liver injury in rats. Food Chem Toxicol 47(10):2499–2506. https://doi.org/10.1016/j.fct.2009.07.007
Weyant MJ, Carothers AM, Dannenberg AJ, Bertagnolli MM (2001) (+)-Catechin inhibits intestinal tumor formation and suppresses focal adhesion kinase activation in the min/+ mouse. Can Res 61(1):118
Klenow S, Glei M (2009) New insight into the influence of carob extract and gallic acid on hemin induced modulation of HT29 cell growth parameters. Toxicol In Vitro 23(6):1055–1061. https://doi.org/10.1016/j.tiv.2009.06.006
Klenow S, Jahns F, Pool-Zobel BL, Glei M (2009) Does an extract of carob (Ceratonia siliqua L.) have chemopreventive potential related to oxidative stress and drug metabolism in human colon cells? J Agric Food Chem 57(7):2999–3004. https://doi.org/10.1021/jf802872b
Klenow S, Glei M, Haber B, Owen R, Pool-Zobel BL (2008) Carob fibre compounds modulate parameters of cell growth differently in human HT29 colon adenocarcinoma cells than in LT97 colon adenoma cells. Food Chem Toxicol 46(4):1389–1397. https://doi.org/10.1016/j.fct.2007.09.003
Haber BD (2003) Carob product based antiinflammatory or chemopreventative agent. Google Patents,
Rosa CST, Tessele K, Prestes RC, Silveira M, Franco F (2015) Effect of substituting of cocoa powder for carob flour in cakes made with soy and banana flours. Int Food Res J 22(5):2111–2118
Iipumbu LSGO., Britz TJ (2008) Compositional analysis of locally cultivated carob (Ceratonia Siliqua) cultivars and development of nutritional food products for a range of market sectors. Stellenbosch University, Stellenbosch
Moreira TC, Transfeld da Silva Á, Fagundes C, Ferreira SMR, Cândido LMB, Passos M, Krüger CCH (2017) Elaboration of yogurt with reduced level of lactose added of carob (Ceratonia siliqua L.). LWT Food Sci Technol Part B 76:326–329. https://doi.org/10.1016/j.lwt.2016.08.033
Acknowledgements
This work was supported by the initiative “Carob: the Black Gold of Cyprus” of the University of Cyprus. The authors thank Prof. Antonis Kakas for critically reading the manuscript.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
Andreas Loullis and Eftychia Pinakoulaki declare that they have no conflict of interest.
Compliance with ethics requirements
This article does not contain any studies with human or animal studies.
Rights and permissions
About this article
Cite this article
Loullis, A., Pinakoulaki, E. Carob as cocoa substitute: a review on composition, health benefits and food applications. Eur Food Res Technol 244, 959–977 (2018). https://doi.org/10.1007/s00217-017-3018-8
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00217-017-3018-8
Keywords
- Carob
- Cocoa substitute
- Phytochemicals
- Health benefits