European Food Research and Technology

, Volume 244, Issue 5, pp 937–948 | Cite as

Maximization of the docosahexaenoic and eicosapentaenoic acids content in concentrates obtained from a by-product of rainbow trout (Oncorhynchus mykiss) processing

  • M. Elsa Pando
  • Alicia Rodríguez
  • Andrea Galdames
  • M. Macarena Berríos
  • Matías Rivera
  • Nalda Romero
  • M. Antonieta Valenzuela
  • Jaime Ortiz
  • Santiago P. Aubourg
Original Paper


This study was focused on a by-product (i.e., belly muscle) resulting from the commercial processing of rainbow trout (Oncorhynchus mykiss). In it, n-3 long-chain polyunsaturated fatty acid (LCPUFA) concentrates were obtained from the belly oil by optimization of the urea-complexation process variables. Thus, the effect of urea:fatty acids (FA) ratio (0–6, w/w), crystallization temperature (− 30 to 30 °C), crystallization time (3.0–48.0 h) and stirring speed (0–1000 rpm) on the eicosapentaenoic acid (EPA, C20:5n-3) and docosahexaenoic acid (DHA, C22:6n-3) contents in concentrates was analyzed by response surface methodology. As a result, high values were obtained for total FA yield recovered, and contents on LCPUFA, EPA and DHA in the non-urea complexing fraction, as well as a great retention of saturated and monounsaturated FA in the urea-crystal adducts. After validation of the model obtained, the combination of process variables levels that maximizes the desirability function (0.91 score) for response variables was 4.21, ‒15 °C, 24 h and 1000 rpm, respectively. In agreement with the great significance and availability of farmed rainbow trout, belly muscle by-product confirmed to be a profitable source of n-3 LCPUFA to be commercialized as an added-value component.


Oncorhynchus mykiss Belly by-product EPA and DHA Concentrates Urea complexation Response surface methodology 



The work was supported by the FONDECYT-CONICYT (Fondo Nacional de Desarrollo Científico y Tecnológico-Comisión Nacional de Investigación Científica y Tecnológica) program throughout the Project No. 1120627.

Compliance with ethical standards

Conflict of interest

All Authors declares that they have no conflict of interest.

Human and animal rights statement

This article does not contain any studies with human or animal subjects.


  1. 1.
    Uauy R, Valenzuela A (2000) Marine oils: the health benefits of n-3 fatty acids. Nutrition 16:680–684CrossRefGoogle Scholar
  2. 2.
    Komprda T (2012) Eicosapentaenoic and docosahexaenoic acids as inflammation-modulating and lipid homeostasis influencing nutraceuticals: a review. J Funct Foods 4:25–38CrossRefGoogle Scholar
  3. 3.
    Gbogouri G, Linder M, Fanni J, Parmentier M (2006) Analysis of lipids extracted from salmon (Salmo salar) heads by commercial proteolytic enzymes. Eur J Lipid Sci Technol 108:766–775CrossRefGoogle Scholar
  4. 4.
    NolsØe H, Undeland I (2009) The acid and alkaline solubilization process for the isolation of muscle proteins: state of the art. Food Bioproc Technol 2:1–27CrossRefGoogle Scholar
  5. 5.
    Zuta C, Simpson B, Man H, Phillips L (2003) Concentrating PUFA from mackerel processing waste. J Am Oil Chem Soc 80:933–936CrossRefGoogle Scholar
  6. 6.
    Rubio-Rodríguez N, Beltrán S, Jaime I, M de Diego S, Sanz MT, Rovira J (2010) Production of omega-3 polyunsaturated fatty acid concentrates: a review. Innov Food Sci Emerg Tech 11:1–2CrossRefGoogle Scholar
  7. 7.
    Fei C, Salimon J, Said M (2010) Optimisation of urea complexation by Box-Behnken design. Sains Malays 39:795–803Google Scholar
  8. 8.
    Wanasundara U, Shahidi F (1999) Concentration of omega 3-polyunsaturated fatty acids of seal blubber oil by urea complexation: optimization of reaction conditions. Food Chem 65:41–49CrossRefGoogle Scholar
  9. 9.
    Liu S, Zhang C, Hong P, Ji H (2006) Concentration of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) of tuna oil by urea complexation: optimization of process parameters. J Food Eng 73:203–209CrossRefGoogle Scholar
  10. 10.
    Falch E, Rustad T, Aursand M (2006) By-products from gadiform species as raw material for production of marine lipids as ingredients in food or feed. Proc Biochem 41:666–674CrossRefGoogle Scholar
  11. 11.
    Blanco M, Sotelo C, Chapela MJ, Pérez-Martín R (2007) Towards sustainable and efficient use of fishery resources: present and future trends. Trends Food Sci Technol 18:29–36CrossRefGoogle Scholar
  12. 12.
    Cheow C-S, Yu SY, Howell NK, Che Man Y, Muhammad K (1999) Effect of fish, starch and salt contents on the microstructure and expansion of fish crackers (“keropok”). J Sci Food Agric 79:879–885CrossRefGoogle Scholar
  13. 13.
    Aidos I, Van der Padt A, Boom R, Luten J (2001) Upgrading of maatjes herring byproducts: production of crude oil. J Agric Food Chem 49:3697–3704CrossRefGoogle Scholar
  14. 14.
    Haliloǧlu H, Bayır A, Sirkecioǧlu N, Aras M, Atamanalp M (2004) Comparison of fatty acid composition in some tissues of rainbow trout (Oncorhynchus mykiss) living in seawater and freshwater. Food Chem 86:55–59CrossRefGoogle Scholar
  15. 15.
    Kolakowska A, Domiszewski Z, Kozlowski D, Gajowniczek M (2006) Effects of rainbow trout freshness on n-3 polyunsaturated fatty acids in fish offal. Eur J Lipid Sci Technol 108:723–729CrossRefGoogle Scholar
  16. 16.
    Sone I, Nortvedt R (2009) A consumer preference study of raw Norwegian rainbow trout (Oncorhynchus mykiss) as sashimi with focus on young adults in Japan. Int J Food Sci Technol 44:2055–2061CrossRefGoogle Scholar
  17. 17.
    Berríos MM, Rodríguez A, Rivera M, Pando ME, Valenzuela MA, Aubourg SP (2017) Optimisation of rancidity stability in long-chain PUFA concentrates obtained from a rainbow trout (Oncorhynchus mykiss) by-product. Int J Food Sci Technol 52:1463–1472CrossRefGoogle Scholar
  18. 18.
    AOCS (1993) Official methods and recommended practices of the American Oil Chemists’ Society, 4th edn. AOCS Press, Champaign, ILGoogle Scholar
  19. 19.
    Pando ME, Bravo B, Berríos M, Galdames A, Rojas C, Romero N, Camilo C, Encina C, Rivera M, Rodríguez A, Aubourg SP (2014) Concentrating n-3 fatty acids from crude and refined commercial salmon oil. Czech J Food Sci 32:169–176CrossRefGoogle Scholar
  20. 20.
    Guil-Guerrero J, Hassan E (2001) Purification process for cod liver oil polyunsatured fatty acids. J Am Oil Chem Soc 78:477–484CrossRefGoogle Scholar
  21. 21.
    Myers R, Montgomery D, Anderson-Cook C (1995) Response surface methodology: process and product optimization using designed experiments, chap. 1. Wiley, New York, pp 1–11Google Scholar
  22. 22.
    CRC (1983) In: Rappoport Z (ed) Handbook of tables for organic compound identification, 11th printing, 3rd edn. CRC Press, Inc., Boca Raton, pp 466–467Google Scholar
  23. 23.
    Méndez C, Masson L, Jiménez P (2010) Estabilización de aceite de pescado por medio de antioxidantes naturales. Aceites y Grasas 80:492–500Google Scholar
  24. 24.
    MINSAL (2012) Reglamento Sanitario de los Alimentos. RSA. 1996. Dto. Nº 977/96 (D. OF.13.05.97). Modificado Dto. 83/09. Dpto. Asesoría Jurídica, Minsal D. OF. 25.06Google Scholar
  25. 25.
    IFOS (2014) The international fish oil standards program. Accessed 16 June 2016
  26. 26.
    GOED (2012) Global organization for EPA and DHA Omega-3. Voluntary monograph Accessed 16 June 2016
  27. 27.
    CRN (2006) Council for responsible nutrition. Omega-3 voluntary monograph 2006. Accessed 16 June 2016
  28. 28.
    Rodríguez A, Castro E, Salinas MC, López R, Miranda M (2001) Interesterification of tallow and sunflower oil. J Am Oil Chem Soc 78:431–436CrossRefGoogle Scholar
  29. 29.
    Haagsma H, Vangen C, Luten J, Jong R, Doorn V (1982) Preparation of an n-3 fatty acids concentrate from cod liver oil. J Am Oil Chem Soc 59:117–118CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • M. Elsa Pando
    • 1
  • Alicia Rodríguez
    • 1
  • Andrea Galdames
    • 1
  • M. Macarena Berríos
    • 1
  • Matías Rivera
    • 1
  • Nalda Romero
    • 1
  • M. Antonieta Valenzuela
    • 1
  • Jaime Ortiz
    • 1
  • Santiago P. Aubourg
    • 2
  1. 1.Department of Food Science and Chemical Technology, Faculty of Chemical and Pharmaceutical SciencesUniversity of ChileSantiagoChile
  2. 2.Department of Food TechnologyMarine Research Institute (CSIC)VigoSpain

Personalised recommendations