European Food Research and Technology

, Volume 244, Issue 4, pp 663–674 | Cite as

Influence of different drying rates on mass transport of efflorescence-causing substances in thin caliber salamis during refrigerated storage in N2/CO2 MAP

  • Felix H. Walz
  • Monika Gibis
  • Sabine Koummarasy
  • Corina L. Reichert
  • Kurt Herrmann
  • Jörg Hinrichs
  • Jochen Weiss
Original Paper


The formation of efflorescences on the surface of dry-fermented sausages has been an issue for meat product manufacturer for several decades. This study focused on inhibiting the efflorescence formation in thin salami (caliber 20 mm) by varying drying conditions. Three different drying rates (fast, normal, and slow) were used to achieve a weight loss of 42% and the amount of efflorescences as well as the chemical composition (moisture, lactate, creatine, sodium, potassium, calcium, and magnesium contents) along the sausage diameter were measured during 8 weeks of storage under modified atmosphere packaging (20% CO2 and 80% N2). Results revealed that the different drying rates significantly changed the distribution of moisture, lactate, and creatine along the sausage diameter. Furthermore, magnesium, lactate, and creatine were identified as the main substances causing efflorescence formation. The magnesium content on the surface directly after drying showed no significant differences between the drying rates. During storage, the magnesium content on the surface of the sausages produced by fast, normal, and slow drying doubled independent on drying rate. All sausages produced by fast, normal, and slow drying showed a large amount of efflorescences after 8 weeks of storage. It can, therefore, be concluded that efflorescence formation in thin salamis may not be prevented by varying the drying conditions.


Lactate Creatine Magnesium Crystallization Sausage profile Mass transport 



This IGF Project (AiF 17879N) of the FEI (Forschungskreis der Ernährungsindustrie e.V., Bonn) was supported via AiF (German Federation of Industrial Research Associations) within the program for promoting the Industrial Collective Research (IGF) of the German Ministry of Economics and Energy (BMWi), based on a resolution of the German Parliament.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Compliance with ethics requirements

This article does not contain any studies with human or animal subjects.


  1. 1.
    Kumar P, Chatli MK, Verma AK, Mehta N, Malav OP, Kumar D, Sharma N (2017) Quality, functionality, and shelf life of fermented meat and meat products: a review. Crit Rev Food Sci Nutr 57(13):2844–2856CrossRefGoogle Scholar
  2. 2.
    Trujillo FJ, Wiangkaew C, Pham QT (2007) Drying modeling and water diffusivity in beef meat. J Food Eng 78(1):74–85CrossRefGoogle Scholar
  3. 3.
    Arnau J, Gou P, Comaposada J (2003) Effect of the relative humidity of drying air during the resting period on the composition and appearance of dry-cured ham surface. Meat Sci 65(4):1275–1280CrossRefGoogle Scholar
  4. 4.
    Ordóñez JA, Hierro EM, Bruna JM, De La Hoz L (1999) Changes in the components of dry-fermented sausages during ripening. Crit Rev Food Sci Nutr 39(4):329–367CrossRefGoogle Scholar
  5. 5.
    Baldini P, Cantoni E, Colla F, Diaferia C, Gabba L, Spotti E, Marchelli R, Dossena A, Virgili E, Sforza S, Tenca P, Mangia A, Jordano R, Lopez MC, Medina L, Coudurier S, Oddou S, Solignat G (2000) Dry sausages ripening: influence of thermohygrometric conditions on microbiological, chemical and physico-chemical characteristics. Food Res Int 33(3–4):161–170CrossRefGoogle Scholar
  6. 6.
    Grau R, Andres A, Barat JM (2014) Principles of drying. In: Toldrá F (ed) Handbook of fermented meat and poultry, 2nd edn. Wiley, West SussexGoogle Scholar
  7. 7.
    Fernández-Fernández E, Vázquez-Odériz ML, Romero-Rodrı́guez MA (2002) Sensory characteristics of Galician chorizo sausage packed under vacuum and under modified atmospheres. Meat Sci 62(1):67–71CrossRefGoogle Scholar
  8. 8.
    Rubio B, Martínez B, García-Cachán MD, Rovira J, Jaime I (2008) Effect of the packaging method and the storage time on lipid oxidation and colour stability on dry fermented sausage salchichón manufactured with raw material with a high level of mono and polyunsaturated fatty acids. Meat Sci 80(4):1182–1187CrossRefGoogle Scholar
  9. 9.
    Costa-Corredor A, Pakowski Z, Lenczewski T, Gou P (2010) Simulation of simultaneous water and salt diffusion in dry fermented sausages by the Stefan–Maxwell equation. J Food Eng 97(3):311–318CrossRefGoogle Scholar
  10. 10.
    Collell C, Gou P, Arnau J, Muñoz I, Comaposada J (2012) NIR technology for on-line determination of superficial a w and moisture content during the drying process of fermented sausages. Food Chem 135(3):1750–1755CrossRefGoogle Scholar
  11. 11.
    Arnau J, Gou P, Alvarez F (2002) White precipitates formed on the surface of “chorizo”. In: 48th international congress of meat science and technology, pp 300–301Google Scholar
  12. 12.
    Arnau J, Maneja E, Guerrero L, Monfort JM (1993) Phosphate crystals in raw cured ham. Fleischwirtschaft 73(8):875–876Google Scholar
  13. 13.
    Kühne D, Stiebing A, Kolb R (1986) Unerwünschter Belag der Rohwurstoberfläche. In: Jahresbericht der Bundesanstalt für Fleischforschung. KulmbachGoogle Scholar
  14. 14.
    Kröckel L (2004) Influence of fermentation on creatine and lactate concentrations in white efflorescences on dry fermented sausages. Mitteilungsblatt der Fleischforschung Kulmbach 43(166):355–362Google Scholar
  15. 15.
    Kröckel L, Jira W, Kühne D, Müller W-D (2003) Creatine blooms on the surface of prepacked fermented sausages. Fleischwirtschaft 83(4):103–105Google Scholar
  16. 16.
    Stiebing A, Thumel H (2010) High level in spite of specific deficiencies: the DLG Quality Competition 2009—raw sausages and raw cured meats and the trend for raw ham cube products. Fleischwirtschaft 90(3):65–70Google Scholar
  17. 17.
    Walz FH, Gibis M, Herrmann K, Hinrichs J, Weiss J (2017) Chemical and optical characterization of white efflorescences on dry fermented sausages under modified atmosphere packaging. J Sci Food Agric. doi: 10.1002/jsfa.8358 Google Scholar
  18. 18.
    Gulati T, Datta AK (2015) Mechanistic understanding of case-hardening and texture development during drying of food materials. J Food Eng 166:119–138CrossRefGoogle Scholar
  19. 19.
    Hack K-H, Gerhardt U, Staffe E (1976) Verarbeitungsmaterial-Atlas für die Fleisch- und Wurstwarenproduktion. Gewürzmüller, StuttgartGoogle Scholar
  20. 20.
    AOAC (1990) Official Methods of Analysis, 15th edn. Association of Official Analytical Chemists, ArlingtonGoogle Scholar
  21. 21.
    VDLUFA (2011) Methodenbuch Band VII Umweltanalytik. VDLUFA-Verlag, BonnGoogle Scholar
  22. 22.
    Mersmann A, Kind M, Stichlmair J (2005) Thermische Verfahrenstechnik. Springer, HeidelbergCrossRefGoogle Scholar
  23. 23.
    Lewis WK (1921) The rate of drying of solid materials. J Ind Eng Chem 13(5):427–432CrossRefGoogle Scholar
  24. 24.
    Fabbri A, Cevoli C (2015) 2D water transfer finite elements model of salami drying, based on real slice image and simplified geometry. J Food Eng 158:73–79CrossRefGoogle Scholar
  25. 25.
    Gulati T, Datta AK, Doona CJ, Ruan RR, Feeherry FE (2015) Modeling moisture migration in a multi-domain food system: application to storage of a sandwich system. Food Res Int 76(Part 3):427–438CrossRefGoogle Scholar
  26. 26.
    Cevoli C, Fabbri A, Tabanelli G, Montanari C, Gardini F, Lanciotti R, Guarnieri A (2014) Finite element model of salami ripening process and successive storage in package. J Food Eng 132:14–20CrossRefGoogle Scholar
  27. 27.
    Ammor MS, Mayo B (2007) Selection criteria for lactic acid bacteria to be used as functional starter cultures in dry sausage production: an update. Meat Sci 76(1):138–146CrossRefGoogle Scholar
  28. 28.
    Lücke FK (2003) Fermented meat products. In: Caballero B (ed) Encyclopedia of food sciences and nutrition, 2nd edn. Academic Press, OxfordGoogle Scholar
  29. 29.
    Catte M, Gancel F, Dzierszinski F, Tailliez R (1999) Effects of water activity, NaCl and smoke concentrations on the growth of Lactobacillus plantarum ATCC 12315. Int J Food Microbiol 52(1–2):105–108CrossRefGoogle Scholar
  30. 30.
    Walz FH, Gibis M, Schrey P, Herrmann K, Reichert CL, Hinrichs J, Weiss J (2017) Inhibitory effect of phosphates on magnesium lactate efflorescence formation in dry-fermented sausages. Food Res Int. doi: 10.1016/j.foodres.2017.07.015 Google Scholar
  31. 31.
    Coretti K (1971) Rohwurstreifung und Fehlerzeugnisse bei der Rohwurstherstellung. Verlag der Rheinhessischen Druckwerkstätte, AlzeyGoogle Scholar
  32. 32.
    Johansen SMB, Laugesen JL, Janhøj T, Ipsen RH, Frøst MB (2008) Prediction of sensory properties of low-fat yoghurt and cream cheese from surface images. Food Qual Prefer 19(2):232–246CrossRefGoogle Scholar
  33. 33.
    Wu D, Sun D-W (2013) Advanced applications of hyperspectral imaging technology for food quality and safety analysis and assessment: a review—part II: applications. Innov Food Sci Emerg Technol 19:15–28CrossRefGoogle Scholar
  34. 34.
    Egelandsdal B, Christiansen KF, Høst V, Lundby F, Wold JP, Kvaal K (1999) Evaluation of scanning electron microscopy images of a model dressing using image feature extraction techniques and principal component analysis. Scanning 21(5):316–325CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Felix H. Walz
    • 1
  • Monika Gibis
    • 1
  • Sabine Koummarasy
    • 1
  • Corina L. Reichert
    • 1
  • Kurt Herrmann
    • 1
  • Jörg Hinrichs
    • 2
  • Jochen Weiss
    • 1
  1. 1.Department of Food Physics and Meat Science, Institute of Food Science and BiotechnologyUniversity of HohenheimStuttgartGermany
  2. 2.Department of Soft Matter Science and Dairy Technology, Institute of Food Science and BiotechnologyUniversity of HohenheimStuttgartGermany

Personalised recommendations