Advertisement

European Food Research and Technology

, Volume 244, Issue 4, pp 611–621 | Cite as

Methyl jasmonate: effect on proanthocyanidin content in Monastrell and Tempranillo grapes and wines

  • Rocío Gil-Muñoz
  • José Ignacio Fernández-Fernández
  • Javier Portu
  • Teresa Garde-Cerdán
Original Paper
  • 188 Downloads

Abstract

Proanthocyanidins or “condensed tannins” play an important role in the organoleptic properties of wines, and their levels in both grapes and wines can be achieved by several means. One such way is based on the use of elicitors, agrochemicals which were originally designed to improve resistance to plant pathogens, but whose action mechanism has also been found to increase polyphenol levels. Among these chemical elicitors, jasmonic acid and, especially, its methyl ester, methyl jasmonate (MeJ), can increase the production of secondary metabolites such as anthocyanins, flavonoids, phenolic acids, and other antioxidant molecules, enhancing the fruit quality and post-harvest life, as well as increasing their health-related properties. The objective of this study was to determine whether the application during two consecutive years of MeJ to Monastrell and Tempranillo varieties at the veraison period had any effect on the accumulation of proanthocyanidins and subsequently on their extractability into wine. The results obtained indicated that treatments increased the grape proanthocyanidin content only in one of the years but for both varieties tested, as well as their levels in the corresponding wines.

Keywords

Proanthocyanidins Monastrell Tempranillo Methyl jasmonate Extractability 

Notes

Acknowledgements

This work was made possible by financial assistance from the Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria. RTA2013-00053-C03-02 and RTA2013-00053-C03-01. J. P. and T. G.-C. also wish to thank the INIA-Gobierno de La Rioja and European Social Fundfor their contracts. T. G.-C. also thanks MINECO for funding her Ramón y Cajal contract.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Compliance with ethics requirements

The article does not contain any studies with human or animal subjects.

References

  1. 1.
    Haslam E (1998) Polyphenols: structure and biosynthesis. Cambridge University, Cambridge, pp 35–42Google Scholar
  2. 2.
    Dixon RA, Lamb CJ, Masoud S, Sewalt VJH, Paiva NL (1996) Gene 179:61–71CrossRefGoogle Scholar
  3. 3.
    Aerts RJ, Barry TN, McNabb WC (1999) Agric Ecosyst Environ 75:1–12CrossRefGoogle Scholar
  4. 4.
    Garcia-Mier L, Guevara-Gonzalez RG, Mondragon-olguin VM, Verduzco-Cuellar BR, Torres-Pacheco I (2013) Int J Mol Sci 14:4203–4222CrossRefGoogle Scholar
  5. 5.
    Vidal S, Francis L, Guyot S, Marnet N, Kwiatkowski M, Gawel R, Cheynier V, Waters E (2003) J Sci Food Agric 83:564–573CrossRefGoogle Scholar
  6. 6.
    Ferrer-Gallego R, García-Marino M, Hernández-Hierro M, Rivas-Gonzalo JC, Escribano-Bailón TM (2010) Anal Chim Acta 660:22–28CrossRefGoogle Scholar
  7. 7.
    Bindon K, Smith P, Holt H, Kennedy J (2010) J Agric Food Chem 58:10736–10746CrossRefGoogle Scholar
  8. 8.
    Bautista-Ortin AB, Busse-Valverde N, Lopez-Roca JM, Gil-Muñoz R, Gomez-Plaza E (2014) Food Sci and Technol 49:34–41Google Scholar
  9. 9.
    Busse-Valverde N, Gómez-Plaza E, López-Roca JM, Gil-Muñoz R, Fernández- Fernández JI, Bautista-Ortín AB (2010) J Agric Food Chem 58:11333–11339CrossRefGoogle Scholar
  10. 10.
    Goetz G, Fkyerat A, Metais N, Kunz M, Tabacchi R, Pezet R, Pont V (1999) Phytochem 52:759–767CrossRefGoogle Scholar
  11. 11.
    Song HH, Ryu HW, Lee KJ, Jeong IY, Kim DS, OH SR (2014) Metabolomics 10:833–841. doi: 10.1007/s11306-014-0640-3 CrossRefGoogle Scholar
  12. 12.
    Sancho M, Mach N (2015) Nutr Hosp 31:535–551Google Scholar
  13. 13.
    Beckers GJM, Spoel SH (2006) Plant Biol 8:1–10. doi: 10.1055/s-2005-872705 CrossRefGoogle Scholar
  14. 14.
    Concha CM, Figueroa NE, Poblete LA, Oñate FA, Schwab W, Figueroa CR (2003) Plant Physiol Biochem 70:433–444CrossRefGoogle Scholar
  15. 15.
    Karaman S, Ozturk B, Genc N, Celik SM (2012) J Food Process Preserv 37:717–728Google Scholar
  16. 16.
    Rudell DR, Fellmann JK, Mattheis JP (2005) HortScience 40:1760–1762Google Scholar
  17. 17.
    Reyes-Diaz M, Lobos T, Cardemil L, Nunes-Nesi A, Retamales J, Jaakola L, Alberdi M, Ribera-Fonseca A (2016) Molecules 21:567. doi: 10.3390/molecules21060567 CrossRefGoogle Scholar
  18. 18.
    Portu J, López-Giral N, López R, González-Arenzana L, González-Ferrero C, López-Alfaro I, Santamaría P, Garde-Cerdán T (2015) Different tools to enhance grape and wine anthocyanin content. In: Warner LM (ed) Handbook of anthocyanins: food sources, chemical applications and health benefits. Nova Science, New York, pp 51–88Google Scholar
  19. 19.
    Ruiz-García Y, Gil-Muñoz R, López-Roca JM, Martínez- Cutillas A, Romero-Cascales I, Gómez-Plaza E (2013) J Agric Food Chem 61:3978–3983CrossRefGoogle Scholar
  20. 20.
    Gil-Muñoz R, Fernández-Fernández JI, Crespo-Villegas O, Garde-Cerdán T (2017) Food Res Int 98:34–39CrossRefGoogle Scholar
  21. 21.
    Kennedy JA, Jones GP (2001) J Agric Food Chem 49:1740–1746CrossRefGoogle Scholar
  22. 22.
    del Pastor Río JL, Kennedy JA (2006) Am J Enol Vitic 57:125–132Google Scholar
  23. 23.
    Gomez-Plaza E, Bautista-Ortín AB, Ruiz-García Y, Fernández-Fernández JI, Gil-Muñoz R (2016) J Sci Food Agric 97:977–983CrossRefGoogle Scholar
  24. 24.
    Peyrot des Gachons (2003) C, Kennedy JA. J Agric Food Chem 51:5877–5881CrossRefGoogle Scholar
  25. 25.
    Bautista-Ortín AB, Ruiz-García Y, Marín F, Molero N, Apolinar-Valiente R, Gómez-Plaza E (2015) J Agric Food Chem 63:620–633CrossRefGoogle Scholar
  26. 26.
    Downey MO, Harvey JS, Robinson SP (2003) Austr J Grape Wine Res 9:15–27CrossRefGoogle Scholar
  27. 27.
    Romero-Cascales I, Ortega-Regules A, López-Roca JM, Fernández-Fernández JI, Gómez-Plaza E (2005) Am J Enol Vitic 56:212–219Google Scholar
  28. 28.
    Cadot Y, Minana-Castello MT, Chevalier M (2006) J Agric Food Chem 54:9206–9215CrossRefGoogle Scholar
  29. 29.
    Cohen SD, Tarara JM, Gambetta GA, Mathews MA, Kennedy JA (2012) J Exp Bot 63:2655–2665CrossRefGoogle Scholar
  30. 30.
    Downey MO, Dokoozlian NK, Krstic M (2006) Am J Enol Vitic 3:257–268Google Scholar
  31. 31.
    Iriti M, Rossoni M, Borgo M, Ferrara L, Faoro F (2005) J Agric Food Chem 53:9133–9139CrossRefGoogle Scholar
  32. 32.
    Fernández-Marín MI, Puertas B, Guerrero RF, García-Parrilla MC, Cantos- Villar E (2014) J Food Sci 79:310–317CrossRefGoogle Scholar
  33. 33.
    Chira K, Schmauch G, Saucier C, Fabre S, Teissedre PL (2009) J Agric Food Chem 57:545–553CrossRefGoogle Scholar
  34. 34.
    Fernandez K, Kennedy JA, Agosin E (2007) J Agric Food Chem 55:3675–3680CrossRefGoogle Scholar
  35. 35.
    Downey MO, Harvey JS, Simon R (2004) Aust J Grape Wine Res 10:55–73CrossRefGoogle Scholar
  36. 36.
    Koyama K, Ikeda H, Poudel PR, Goto-Yamamoto N (2012) Phytochem 78:54–64CrossRefGoogle Scholar
  37. 37.
    Cortell JM, Kennedy JA (2006) J Agric Food Chem 54:8510–8520CrossRefGoogle Scholar
  38. 38.
    Mercurio MD, Dambergs RG, Cozzolino D, Herderich MJ, Smith PA (2010) J Agric Food Chem 58:12313–12319CrossRefGoogle Scholar
  39. 39.
    McRae J, Schulkin A, Kassara S, Holt H, Smith P (2013) J Agric Food Chem 61:719–727CrossRefGoogle Scholar
  40. 40.
    Portu J, López R, Baroja E, Santamaría P, Garde-Cerdán T (2016) Food Chem 201:213–221CrossRefGoogle Scholar
  41. 41.
    Adams DO, Scholz RC (2008) In: Proceedings of the 13th Australian Wine Industry Technical Conference. Australian Society for Viticulture and Oenology, Adelaide, pp 160–164Google Scholar
  42. 42.
    Bindon K, Bacic A, Kennedy J (2012) J Agric Food Chem 60:9249–9260CrossRefGoogle Scholar
  43. 43.
    Hanlin R, Hrmova M, Harbertson JF, Downey M (2010) Aust J Grape Wine Res 16:173–188CrossRefGoogle Scholar
  44. 44.
    Le Bourvellec C, Guyot S, Renard CM, Abbal P (2004) Biochim Biophys Acta 1672:192–202CrossRefGoogle Scholar
  45. 45.
    McManus J, Davis K, Beart J, Gaffney S, Lilley T, Haslam E (1985) J Chem Soc Perkin Trans II 2:1429–1438CrossRefGoogle Scholar
  46. 46.
    Riou C, Vernhet A, Doco T (2002) Food Hydrocoll 16:17–23CrossRefGoogle Scholar
  47. 47.
    Bari R, Jones J (2008) Plant Mol Biol 69:473–488CrossRefGoogle Scholar
  48. 48.
    Kennedy J, Matthews M, Waterhouse A (2000) Phytochem 55:77–85CrossRefGoogle Scholar
  49. 49.
    Geny L, Saucier C, Bracco S, Daviaud F, Glories Y (2003) J Agric Food Chem 51:8051–8054CrossRefGoogle Scholar
  50. 50.
    Bautista-Ortín AB, Busse-Valverde N, Fernández-Fernández JI, Gómez-Plaza E, Gil-Muñoz R (2016) J Int Sci Vigne Vin 50:91–100Google Scholar
  51. 51.
    Kassara S, Kennedy JA (2011) J Agric Food Chem 59:8409–8412CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Rocío Gil-Muñoz
    • 1
  • José Ignacio Fernández-Fernández
    • 1
  • Javier Portu
    • 2
  • Teresa Garde-Cerdán
    • 2
  1. 1.Instituto Murciano de Investigación y Desarrollo AgroalimentarioMurciaSpain
  2. 2.Instituto de Ciencias de la Vid y del Vino (Gobierno de La Rioja-CSIC-Universidad de La Rioja)LogroñoSpain

Personalised recommendations