Skip to main content
Log in

Antioxidant and antimicrobial activity of linseed lignans and phenolic acids

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

In this study, we present antioxidant and antimicrobial activity of isolated lignans freed of other bioactive compounds in comparison with dominant phenolic acids. The combinations of screw pressing, solvent extractions, acid-catalysed hydrolysis and flash chromatography were used to describe and isolate linseed phenolic compounds. Secoisolariciresinol, ferulic, p-coumaric and caffeic acids were the most abundant ones while salicylic, gentisic, dihydro-p-coumaric, phenylacetic, vanillic, p-hydroxybenzoic and β-resorcylic acids were the minor secondary metabolites. Anhydrosecoisolariciresinol (ANHSECO) and levulinic acid were an artefacts formed during exhaustive hydrolysis. The effective concentration (EC50), antiradical power (1/EC50), stoichiometry (2·EC50) values and second order rate constants k 2 were determined to classify antioxidants according to reaction kinetics as slow (p-coumaric acid derivatives), medium (ferulic acid derivatives, secoisolariciresinol and ANHSECO; k 2 ranges from 1.85 to 2.29 μmol−1 dm3 s−1) and fast (caffeic acid derivatives; k 2 = 6.91 μmol−1 dm3 s−1) ones. Rancimat method was simulating lipid peroxidation and its inhibition. Linseed lignans and phenolic acids could be classified according to protection of unsaturated triacylglycerols in the following order: p-coumaric acid < ANHSECO < methyl p-coumarate < ferulic acid < secoisolariciresinol < methyl ferulate < crude extract < caffeic acid < methyl caffeate. The mechanism and the formation of secoisolariciresinol oxidation products were discovered by mass spectrometry. The effect of crude linseed extract, ANHSECO, caffeic, ferulic and p-coumaric acid on the growth of Gram-negative bacteria, Gram-positive bacteria, yeasts and moulds was also determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bjelkova M, Genčurová V, Griga M (2011) Ind Crops Prod 33(3):761–774

    Article  CAS  Google Scholar 

  2. Shim YY, Gui B, Arnison PG, Wang Y, Reaney MJT (2014) Trends Food Sci Tech 38:5–20.

    Article  CAS  Google Scholar 

  3. Stanley DW, Gill TA, deMan JM, Tung MA (1976) Can Inst Food Sci Technol J 9(2):54–60

    Article  Google Scholar 

  4. Mishra K, Ojha H, Chaudhury NK (2012) Food Chem 130(4):1036–1043

    Article  CAS  Google Scholar 

  5. Suja KP, Jayalekshmy A, Arumughan C (2004) J Agric Food Chem 52(4):912–915

    Article  CAS  Google Scholar 

  6. Goupy P, Dufour C, Loonis M, Dangles O (2003) J Agric Food Chem 51(3):615–622

    Article  CAS  Google Scholar 

  7. Charlet S, Bensaddek L, Raynaud S, Gillet F, Mesnard F, Fliniaux M-A (2002) Plant Physiol Biochem 40(3):225–229

    Article  CAS  Google Scholar 

  8. Sarajlija H, Čukelj N, Novotni D, Mršić G, Brnčić M, Ćurić D (2012) Czech. J Food Sci 30(1):45–52

    CAS  Google Scholar 

  9. Meagher LP, Beecher GL, Flanagan VP, Li BV (1999) J Agric Food Chem 47(8):3173–3180

    Article  CAS  Google Scholar 

  10. Smeds AI, Eklund PC, Sjöholm RE, Willför SM, Nishibe S, Deyama T, Holmbom BR (2007) J Agric Food Chem 55(4)1337–1346

    Article  CAS  Google Scholar 

  11. Eklund PC, Långvik OK, Wärnå JP, Salmi TO, Willför SM, Sjöholm RE (2005) Org Biolmol Chem 3:3336–3347

    Article  CAS  Google Scholar 

  12. Sánchez-Moreno C, Laurrauri JA, Saura-Calixto F (1998) Sci Food Agric 76(2):270–276

    Article  Google Scholar 

  13. Villaño D, Fernández-Pachón MS, Moyá ML, Troncoso AM, García-Parrilla MC (2007) Talanta 71:230–235

    Article  Google Scholar 

  14. Brand-Williams W, Cuvellier ME, Berset C (1995) LWT-Food Sci Technol 28(1):25–30

    Article  CAS  Google Scholar 

  15. Merkl R, Hrádková I, Filip V, Šmidrkal J (2010) Czech J Food Sci 28(4):275–279

    CAS  Google Scholar 

  16. Popova IE, Hall C, Kubátová A (2009) J Chrom A 1216(2):217–229

    Article  CAS  Google Scholar 

  17. Sicilia T, Niemeyer HB, Honig DM, Metzler M (2003) J Agric Food Chem 51(5)1181–1188

    Article  CAS  Google Scholar 

  18. Willför SM, Smeds AI, Holmbom BR (2006) J Chrom A 1112(1–2):64–77

    Article  Google Scholar 

  19. Xu L, Davis TA, Porter NA (2009) J Am Chem Soc 131(36):13037–13044

    Article  CAS  Google Scholar 

  20. Szydłowska-Czerniak A, Bartkowiak-Broda I, Karlović I, Karlovits G, Szłyk E (2011) Food Chem 127(2):556–563

    Article  Google Scholar 

  21. Xie J, Schaich KM (2014) J Agric Food Chem 62(19):4251–4260

    Article  CAS  Google Scholar 

  22. Fuster MD, Lampi AM, Hopia A, Kamal-Eldin A (1998) Lipids 33(7):715–722

    Article  CAS  Google Scholar 

  23. Hrádková I, Merkl R, Šmidrkal J, Kyselka J, Filip V (2013) Eur J lipid sci Technol 115:747–755

    Article  Google Scholar 

  24. Kosova M, Hrádková I, Mátlová V, Kadlec D, Šmidrkal J, Filip V (2015) J Clin Pharm Ther 40:436–440

    Article  CAS  Google Scholar 

  25. Yuan J-P, Li X, Xu S-P, Wang J-H, Liu X (2008) J Agric Food Chem 56(21):10041–10047

    Article  CAS  Google Scholar 

  26. Smith MB, March J (2007) March´s advanced organic chemistry, 6th edn. Wiley, Hoboken, New Jersey, pp 534–535t;/bib>

    Google Scholar 

  27. Craft BD, Kerrihard AL, Amarowicz R, Pegg RB (2012) Compr Rev Food Sci Food Saf 11(2):148–173

    Article  CAS  Google Scholar 

  28. Masuda T, Akiyama J, Fujimoto A, Yamauchi S, Maekawa T, Sone Y (2010) Food Chem 123(2):442–450

    Article  CAS  Google Scholar 

  29. Meagher LP, Beecher GR, Flanagan VP, Li BW (1999) J Agric Food Chem 47(8):3173–3180

    Article  CAS  Google Scholar 

  30. Maillard JY (2002) J Appl Microbiol 92:16S–27S

    Article  Google Scholar 

  31. Välimaa AL, Honkalampi-Hämäläinen U, Pietarinen S, Willför S, Holmbom B, Wright von A (2007) Int J Food Microbiol 115(2):235–243

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Agriculture of the Czech Republic, National Agency of Agricultural Research, Project No. QJ1510274 in the programme KUS and financial support from specific university research (MSMT No. 20-SVV/2016, MSMT No. 20-SVV/2017). The authors are indebted to Erik Pesek, M.Sc., for the determination of chemical and physical characteristics of linseed oils and the expeller cake.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Kyselka.

Ethics declarations

Conflict of interest

The authors have declared no conflict of interest.

Compliance with ethics requirements

This article does not contain any studies with human or animal subjects.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kyselka, J., Rabiej, D., Dragoun, M. et al. Antioxidant and antimicrobial activity of linseed lignans and phenolic acids. Eur Food Res Technol 243, 1633–1644 (2017). https://doi.org/10.1007/s00217-017-2871-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-017-2871-9

Keywords

Navigation