European Food Research and Technology

, Volume 243, Issue 7, pp 1261–1275 | Cite as

Fractionation and isolation of polyphenols from Aronia melanocarpa by countercurrent and membrane chromatography

  • Tuba Esatbeyoglu
  • Miriam Rodríguez-Werner
  • Peter Winterhalter
Original Paper


In the current study, the fractionation and isolation of polyphenols from Aronia melanocarpa has been performed with two different chromatographic techniques on a large scale. On the one hand, the fractionation of polyphenols such as anthocyanins, phenolic acids, quercetin–glycosides and flavanons from A. melanocarpa pomace was done by high-speed countercurrent chromatography and low-speed rotary countercurrent chromatography. On the other hand, the preseparation of A. melanocarpa extracts from pomace and juice in an anthocyanin and a co-pigment fraction was carried out by membrane chromatography after removing the polymeric procyanidins by precipitation with ethanol. Afterward, the separation and isolation of anthocyanins and co-pigments were done by preparative countercurrent chromatography. Purity control and identification of the isolated compounds were made by HPLC–PDA, HPLC–ESI-MSn and 1H- as well as 13C-NMR spectroscopy. Various compounds, e.g., chlorogenic acids, isorhamnetin-, apigenin-, luteolin- and taxifolin-derivatives, are described for A. melanocarpa for the first time.


Chokeberry Polyphenols Anthocyanins Membrane adsorber Preparative countercurrent chromatography 



High performance liquid chromatography


High-speed countercurrent chromatography


Low-speed rotary countercurrent chromatography


High-performance countercurrent chromatography


Trifluoroacetic acid



We are grateful for the technical assistance of Janina Westphal and Josefine Ostberg. The authors thank the German Federal Ministry of Education and Research (BMBF—Bundesministerium für Bildung and Forschung) for financial support of the joint project “Dietary procyanidins” (Grant 0313828C). A. melanocarpa samples were kindly provided by Melanie Stürtz (Symrise, Holzminden, Germany) and Kelterei Walther (Dresden, Germany).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics requirements

This article does not contain any studies with human or animal subjects.

Supplementary material

217_2016_2837_MOESM1_ESM.doc (31 kb)
Supplementary material 1 (DOC 31 kb)
217_2016_2837_MOESM2_ESM.doc (34 kb)
Supplementary material 2 (DOC 34 kb)


  1. 1.
    Strigl AW, Leitner E, Pfannhauser W (1995) Die Schwarze Apfelbeere (Aronia melanocarpa) als natürliche Farbstoffquelle. Dtsch Lebensmitt Rundsch 91:177–180Google Scholar
  2. 2.
    Kulling SE, Rawel HM (2008) Chokeberry (Aronia melanocarpa)—a review on the characteristic components and potential health effects. Planta Med 74:1625–1634CrossRefGoogle Scholar
  3. 3.
    Kokotkiewicz A, Jaremicz Z, Luczkiewicz M (2010) Aronia plants: a review of traditional use, biological activities, and perspectives for modern medicine. J Med Food 13:255–269CrossRefGoogle Scholar
  4. 4.
    Mayer-Miebach E, Adamiuk M, Behsnilian D (2012) Stability of chokeberry bioactive polyphenols during juice processing and stabilization of a polyphenol-rich material from the by-product. Agriculture 2:244–258CrossRefGoogle Scholar
  5. 5.
    Mikulic-Petkovsek M, Slatnar A, Stampar F, Veberic R (2012) HPLC–MSn identification and quantification of flavonol glycosides in 28 wild and cultivated berry species. Food Chem 135:2138–2146CrossRefGoogle Scholar
  6. 6.
    Zheng W, Wang SY (2003) Oxygen radical absorbing capacity of phenolics in blueberries, cranberries, chokeberries, and lingonberries. J Agric Food Chem 51:502–509CrossRefGoogle Scholar
  7. 7.
    Wu X, Gu L, Prior RL, McKay S (2004) Characterization of anthocyanins and proanthocyanidins in some cultivars of Ribes, Aronia, and Sambucus and their antioxidant capacity. J Agric Food Chem 52:7846–7856CrossRefGoogle Scholar
  8. 8.
    Bermúdez-Soto MJ, Tomás-Barberán FA (2004) Evaluation of commercial red fruit juice concentrates as ingredients for antioxidant functional juices. Eur Food Res Technol 219:133–141CrossRefGoogle Scholar
  9. 9.
    Oszmiánski J, Wojdylo A (2005) Aronia melanocarpa phenolics and their antioxidant activity. Eur Food Res Technol 221:809–813CrossRefGoogle Scholar
  10. 10.
    Cherniack EP (2011) Polyphenols: planting the seeds of treatment for the metabolic syndrome. Nutrition 27:617–623CrossRefGoogle Scholar
  11. 11.
    Kędzierska M, Malinowska J, Kontek B, Kołodziejczyk-Czepas J, Czernek U, Potemski P, Piekarskic J, Jeziorskic A, Olasa B (2013) Chemotherapy modulates the biological activity of breast cancer patients plasma: the protective properties of black chokeberry extract. Food Chem Toxicol 53:126–132CrossRefGoogle Scholar
  12. 12.
    Bräunlich M, Slimestad R, Wangensteen H, Brede C, Malterud KE, Barsett H (2013) Extracts, anthocyanins and procyanidins from Aronia melanocarpa as radical scavengers and enzyme inhibitors. Nutrients 5:663–678CrossRefGoogle Scholar
  13. 13.
    Olas B (2014) Role of black chokeberries in breast cancer: a focus on antioxidant activity. In: Preedy V (ed) Cancer—oxidative stress and dietary antioxidants. Elsevier, Amsterdam, pp 151–157Google Scholar
  14. 14.
    Badescu M, Badulescu O, Badescu L, Ciocoiu M (2015) Effects of Sambucus nigra and Aronia melanocarpa extracts on immune system disorders within diabetes mellitus. Pharm Biol 53:533–539CrossRefGoogle Scholar
  15. 15.
    Juadjur A, Winterhalter P (2012) Development of a novel adsorptive membrane chromatographic method for the fractionation of polyphenols from bilberry. J Agric Food Chem 60:2427–2433CrossRefGoogle Scholar
  16. 16.
    Köhler N (2006) Entwicklung und Anwendung leistungsfähiger präparativer gegenstromverteilungschromatographischer Trenntechniken. Cuvillier Verlag, Göttingen, Germany. Ph.D. thesis (in German)Google Scholar
  17. 17.
    Stahl E (1967) Dünnschichtchromatographie. Springer, BerlinGoogle Scholar
  18. 18.
    Määttä-Riihinen KR, Kamal-Eldin A, Mattila PH, González-Paramás AM, Törrönen AR (2004) Distribution and contents of phenolic compounds in eighteen Scandinavian berry species. J Agric Food Chem 52:4477–4486CrossRefGoogle Scholar
  19. 19.
    Degenhardt A, Knapp H, Winterhalter P (2000) Separation and purification of anthocyanins by high-speed countercurrent chromatography and screening for antioxidant activity. J Agric Food Chem 48:338–343CrossRefGoogle Scholar
  20. 20.
    Hillebrand S (2004) Analytik von Polyphenolen in Buntsäften im Hinblick auf Saftqualität, Farbe und antioxidative Aktivität. Cuvillier Verlag, Göttingen, Germany. Ph.D. thesis (in German)Google Scholar
  21. 21.
    Dougall DK, Baker DC, Gakh EG, Redus MA, Whittemore NA (1998) Anthocyanins from wild carrot suspension cultures acylated with supplied carboxylic acids. Carbohydr Res 310:177–189CrossRefGoogle Scholar
  22. 22.
    Reiersen B, Kiremire BT, Byamukama R, Andersen ØM (2003) Anthocyanins acylated with gallic acid from chenille plant, Acalypha hispida. Phytochemistry 64:867–871CrossRefGoogle Scholar
  23. 23.
    Fossen T, Andersen ØM, Øvstedal DO, Pedersen AT, Raknes Å (1996) Characteristic Anthocyanin pattern from onions and other Allium spp. J Food Sci 61:703–706CrossRefGoogle Scholar
  24. 24.
    Zhang Y, Seeram NP, Lee R, Feng L, Heber D (2008) Isolation and identification of strawberry phenolics with antioxidant and human cancer cell antiproliferative properties. J Agric Food Chem 56:670–675CrossRefGoogle Scholar
  25. 25.
    Pauli GF, Poetsch F, Nahrstedt A (1998) Structure assignment of natural quinic acid derivatives using proton nuclear magnetic resonance techniques. Phytochem Anal 9:177–185CrossRefGoogle Scholar
  26. 26.
    Pauli GF, Kuczkowiak U, Nahrstedt A (1999) Solvent effects in the structure dereplication of caffeoyl quinic acids. Magn Reson Chem 37:827–836CrossRefGoogle Scholar
  27. 27.
    Slimestad R, Torskangerpoll K, Nateland HS, Johannessen T, Giske NH (2005) Flavonoids from black chokeberries, Aronia melanocarpa. J Food Compos Anal 18:61–68CrossRefGoogle Scholar
  28. 28.
    Bennini B, Chulia AJ, Kaouadji M, Thomasson F (1992) Flavonoid glycosides from Erica cinerea. Phytochemistry 31:2483–2486CrossRefGoogle Scholar
  29. 29.
    Kubomura K, Kurakane S, Molyneux J, Omori M, Igarashi K (2006) Identification of the major polyphenols in boysenberry leaves and their suppressive effect on carbon tetrachloride-induced liver injury in mice. Food Sci Technol Res 12:31–37CrossRefGoogle Scholar
  30. 30.
    Caristi C, Bellocco E, Panzera V, Toscano G, Vadalà R, Leuzzi U (2003) Flavonoids detection by HPLC–DAD–MS–MS in lemon juices from Sicilian cultivars. J Agric Food Chem 51:3528–3534CrossRefGoogle Scholar
  31. 31.
    Fabre N, Rustan I, De Hoffmann E, Quetin-Leclercq J (2001) Determination of flavone, flavonol, and flavanone aglycones by negative ion liquid chromatography electrospray ion trap mass spectrometry. J Am Soc Mass Spectrom 12:707–715CrossRefGoogle Scholar
  32. 32.
    Sakakibara H, Honda Y, Nakagawa S, Ashida H, Kanazawa K (2003) Simultaneous determination of all polyphenols in vegetables, fruits, and teas. J Agric Food Chem 51:571–581CrossRefGoogle Scholar
  33. 33.
    Lee JE, Kim G-S, Park S, Kim Y-H, Kim M-B, Lee WS, Jeong SW, Lee SJ, Jin JS, Shin SC (2014) Determination of chokeberry (Aronia melanocarpa) polyphenol components using liquid chromatography-tandem mass spectrometry: overall contribution to antioxidant activity. Food Chem 146:1–5CrossRefGoogle Scholar
  34. 34.
    Clifford MN, Johnston KL, Knight S, Kuhnert N (2003) Hierarchical scheme for LC–MSn identification of chlorogenic acids. J Agric Food Chem 51:2900–2911CrossRefGoogle Scholar
  35. 35.
    Schütz K, Kammerer D, Carle R, Schieber A (2004) Identification and quantification of caffeoylquinic acids and flavonoids from artichoke (Cynara scolymus L.) heads, juice, and pomace by HPLC–DAD–ESI/MSn. J Agric Food Chem 52:4090–4096CrossRefGoogle Scholar
  36. 36.
    Im HW, Suh B-S, Lee S-U, Kozukue N, Ohnisi-Kameyama M, Levin CE, Friedman M (2008) Analysis of phenolic compounds by high-performance liquid chromatography and liquid chromatography/mass spectrometry in potato plant flowers, leaves, stems, and tubers and in home-processed potatoes. J Agric Food Chem 56:3341–3349CrossRefGoogle Scholar
  37. 37.
    Häkkinen S, Heinonen M, Kärenlampi S, Mykkänen H, Ruuskanen J, Törrönen R (1999) Screening of selected flavonoids and phenolic acids in 19 berries. Food Res Int 32:345–353CrossRefGoogle Scholar
  38. 38.
    Mattila P, Hellström J, Törrönen R (2006) Phenolic acids in berries, fruits, and beverages. J Agric Food Chem 54:7193–7199CrossRefGoogle Scholar
  39. 39.
    Esatbeyoglu T (2011) Analyse wertgebender Inhaltsstoffe von Aronia melanocarpa sowie Charakterisierung und Isolierung von Proanthocyanidinen. Cuvillier Verlag, Göttingen, Germany. Ph.D. thesis (in German)Google Scholar
  40. 40.
    Kaiser N (2014) Fraktionierung und Isolierung von Chlorogensäuren und -lactonen aus Kaffee mittels Gegenstromverteilungschromatographie. Cuvillier Verlag, Göttingen, Germany. Ph.D. thesis 2013 (in German)Google Scholar
  41. 41.
    Berthod A, Ruiz-Angel MJ, Carda-Broch S (2003) Elution-extrusion countercurrent chromatography. Use of the liquid nature of the stationary phase to extend the hydrophobicity window. Anal Chem 75:5886–5894CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Tuba Esatbeyoglu
    • 1
  • Miriam Rodríguez-Werner
    • 1
  • Peter Winterhalter
    • 1
  1. 1.Institute of Food ChemistryTechnische Universität BraunschweigBraunschweigGermany

Personalised recommendations