Plant polyphenol content, soil fertilization and agricultural management: a review

Abstract

The review deals with polyphenol content of vegetables and fruits under different experimental conditions. The effect of fertilizers, mainly nitrogen containing fertilizers, on qualitative and especially quantitative content of the polyphenols mixture, was reviewed. Soil nitrogen affects both anthocyanins and flavonoids content, and generally, a higher polyphenolic content is observed when less nitrogen fertilizer is added to the soil. Also the effect of different agricultural management (conventional, organic, biodynamic, integrate) is reviewed with respect to polyphenols. In this case, a major effect has pointed out in the case of vegetables, while agricultural practice affects in a minimal way fruits polyphenols content. The effect of different management is, however, hardly pointed out, since many environmental factors are involved and affect polyphenols biosynthetic pathway.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Ignat I, Volf I, Popa VI (2011) A critical review of methods for characterization of polyphenolic compounds in fruits and vegetables. Food Chem 126:1821–1835

    CAS  Article  Google Scholar 

  2. 2.

    Medić-Ŝarić M, Rastija V, Bojić M (2011) Recent advances in the application of HPLC in the analysis of polyphenols in wine and propolis. J AOAC Int 94:32–42

    Google Scholar 

  3. 3.

    Bergonzi MC, Minunni M, Bilia AR (2008) (Bio)Sensor approach in the evaluation of polyphenols in vegetal matrices. Nat Prod Commun 3:2049–2060

    CAS  Google Scholar 

  4. 4.

    Frankel EN, Finley JW (2008) How to standardize the multiplicity of methods to evaluate natural antioxidants. J Agric Food Chem 56:4901–4908

    CAS  Article  Google Scholar 

  5. 5.

    Ajila CM, Brar SK, Verma M, Tyagi RD, Godbout S, Valéro JR (2011) Extraction and analysis of polyphenols: recent trends. Crit Rev Biotechnol 31:227–249

    CAS  Article  Google Scholar 

  6. 6.

    Haminiuk CWI, Maciel GM, Plata-Oviedo MSV, Peralta RM (2012) Phenolic compounds in fruits—an overview. Int J Food Sci Technol 47:2023–2044

    CAS  Article  Google Scholar 

  7. 7.

    Taamalli A, Arráez-Román D, Zarrouk M, Valverde J, Segura-Carretero A, Fernández-Gutiérrez A (2012) The occurrence and bioactivity of polyphenols in Tunisian olive products and by-products: a review. J Food Sci 77:R83–R92

    CAS  Article  Google Scholar 

  8. 8.

    Xu Y, Simon JE, Welch C, Wightman JD, Ferruzzi MG, Ho L, Passinetti GM, Wu Q (2011) Survey of polyphenol constituents in grapes and grape-derived products. J Agric Food Chem 50:10586–10593

    Article  Google Scholar 

  9. 9.

    Soler C, Soriano JM, Mañes J (2009) Apple-products phytochemicals and processing: a review. Nat Prod Commun 4:659–670

    CAS  Google Scholar 

  10. 10.

    Dembitsky VM, Poovarodom S, Leontowicz H, Leontowicz M, Vearasilp S, Trakhtenberg S, Gorinstein S (2011) The multiple nutrition properties of some exotic fruits: biological activity and active metabolites. Food Res Intern 44:1671–1701

    CAS  Article  Google Scholar 

  11. 11.

    Serrano M, Díaz-Mula HD, Valero D (2011) Antioxidant compounds in fruits and vegetables and changes during postharvest storage and processing. Stewart Postharvest Rev 7:1–10

    Article  Google Scholar 

  12. 12.

    Amarowicz R, Carle R, Dongowski G, Durazzo A, Galensa R, Kammerer D, Maiani G, Piskula MK (2009) Influence of postharvest processing and storage on the content of phenolic acids and flavonoids in foods. Mol Nutr Food Res 53:151–183

    Article  Google Scholar 

  13. 13.

    Tsao R (2010) Chemistry and biochemistry of dietary polyphenols. Nutrients 2:1231–1246

    CAS  Article  Google Scholar 

  14. 14.

    Fernandez-Panchon MS, Villano D, Troncoso AM, Garcia-Parrilla MC (2008) Antioxidant activity of phenolic compounds; from in vitro results to in vivo evidence. Crit Rev Food Sci Nutr 48:649–671

    CAS  Article  Google Scholar 

  15. 15.

    Wang Y, Ho C-T (2009) Polyphenols chemistry of tea and coffee: a century of progress. J Agric Food Chem 57:8109–8114

    CAS  Article  Google Scholar 

  16. 16.

    Cheynier V, Comte G, Davies KM, Lattanzio V, Martens S (2013) Plant phenolics: recent advances on their biosynthesis, genetics, and ecophysiology. Plant Physiol Biochem 72:1–20

    CAS  Article  Google Scholar 

  17. 17.

    Cheynier V (2012) Phenolic compounds: from plants to foods. Phytochem Rev 11:153–177

    CAS  Article  Google Scholar 

  18. 18.

    Stefanelli D, Goodwin I, Jones R (2010) Minimal nitrogen and water use in horticulture: effects on quality and content of selected nutrients. Food Res Intern 43:1833–1843

    CAS  Article  Google Scholar 

  19. 19.

    Callemien D, Collin S (2010) Structure, organoleptic properties, quantification methods, and stability of phenolic compounds in beer: a review. Food Res Intern 26:1–84

    CAS  Article  Google Scholar 

  20. 20.

    El Gharras H (2009) Polyphenols: food sources, properties and applications. a review. Int J Food Sci Technol 44:2512–2518

    Article  Google Scholar 

  21. 21.

    Aron PM, Shellhammer TH (2010) A discussion of polyphenols in beer physical and flavour stability. J Inst Brew 116:369–380

    CAS  Article  Google Scholar 

  22. 22.

    Guilford JM, Pezzuto JM (2011) Wine and health: a review. Am J Enol Vitic 62:471–486

    CAS  Article  Google Scholar 

  23. 23.

    Vauzour D, Rodriguez-Mateos A, Corona G, Oruna-Concha MJ, Spencer JPE (2010) Polyphenols and human health: prevention of disease and mechanism of action. Nutrients 2:1106–1131

    CAS  Article  Google Scholar 

  24. 24.

    Biedrzycka E, Amarowicz R (2008) Diet and health: apple polyphenols as antioxidants. Food Rev Intern 24:235–251

    CAS  Article  Google Scholar 

  25. 25.

    Capanoglu E, Beekwilder J, Boyacioglu D, De Vos RCH, Hall RD (2010) The effect of industrial food processing on potentially health beneficial tomato antioxidants. Crit Rev Food Sci Nutr 50:919–930

    CAS  Article  Google Scholar 

  26. 26.

    Stevanovic T, Diouf PN, Garcia-Perez ME (2009) Bioactive polyphenols from healthy diets and forest biomass. Curr Nutr Food Sci 5:264–295

    CAS  Article  Google Scholar 

  27. 27.

    Pandey KB, Rizvi SI (2009) Current understanding of dietary polyphenols and their role in health and disease. Curr Nutr Food Sci 5:249–263

    CAS  Article  Google Scholar 

  28. 28.

    Sajilata MG, Bajaj PR, Singhal RS (2008) Tea polyphenols as nutraceuticals. Compr Rev Food Sci Food Saf 7:229–254

    CAS  Article  Google Scholar 

  29. 29.

    Roose M, Kahl J, Körner K, Ploeger A (2010) Can the authenticity of organic products be proved by secondary plant substances? Biol Agric Hortic 27:129–138

    Article  Google Scholar 

  30. 30.

    Nguyen PM, Niemeyer ED (2008) Effects of nitrogen fertilization on the phenolic composition and antioxidant properties of basil (Ocinum basilicum L.). J Agric Food Chem 56:8685–8691

    CAS  Article  Google Scholar 

  31. 31.

    Keller M, Hrazdina G (1998) Interaction of nitrogen availability during bloom and light intensity during veraison. II. Effects on anthocyanin and phenolic development during grape ripening. Am J Vitic Enol 49:341–349

    CAS  Google Scholar 

  32. 32.

    Delgado R, Martín P, del Álamo M, González M-R (2004) Changes in the phenolic composition of grape berries during ripening in relation to vineyard nitrogen and potassium fertilisation rates. J Sci Food Agric 84:623–630

    CAS  Article  Google Scholar 

  33. 33.

    Leser C, Treutter D (2005) Effects of nitrogen supply on growth, contents of phenolic compounds and pathogen (scab) resistance of apple trees. Physiol Plant 123:49–56

    CAS  Article  Google Scholar 

  34. 34.

    Sageri EPS, Hutchinson TC (2006) Responses of secondary chemicals in sugar maple (Acer saccharum) seedlings to UV-B, springtime warming and nitrogen additions. Tree Physiol 26:1351–1361

    Article  Google Scholar 

  35. 35.

    Fortier E, Desjardins Y, Tremblay N, Bèlec C, Côtè M (2010) Influence of irrigation and nitrogen fertilization on broccoli polyphenolics concentration. Acta Hortic 856:55–62

    CAS  Article  Google Scholar 

  36. 36.

    Dumas Y, Dadomo M, Di Lucca G, Grolier P (2003) Review: effect of environmental factors and agricultural techniques on antioxidant content of tomatoes. J Sci Food Agric 83:369–382

    CAS  Article  Google Scholar 

  37. 37.

    Bènard C, Gutier H, Bourgaud F, Grasselly D, Navez B, Caris-Veyrat C, Weiss M, Gènard M (2009) Effects of low nitrogen supply on tomato (Solanum lycopersicum) fruit yield and quality with special emphasis on sugars, acids, ascorbate, carotenoids, and phenolic compounds. J Agric Food Chem 57:4112–4123

    Article  Google Scholar 

  38. 38.

    Stewart AJ, Chapman W, Jenkins GI, Graham I, Martin T, Crozier A (2001) The effect of nitrogen and phosphorus deficiency on flavonol accumulation in plant tissues. Plant Cell Environ 24:1189–1197

    CAS  Article  Google Scholar 

  39. 39.

    Lombardo S, Pandino G, Mauromicale G (2015) The nutraceutical response of two globe artichoke cultivars to contrasting NPK fertilizer regimes. Food Res Int 76:852–859

    CAS  Article  Google Scholar 

  40. 40.

    Christensen KB, Kaemper M, Loges R, Fretté XC, Christensen LP, Grevsen K (2010) Effect of nitrogen fertilization, harvest time, and species on the concentration of polyphenols in aerial parts and seeds of normal and tartary buckwheat (Fagopyrum sp.). Eur J Hortic Sci 75:153–164

    CAS  Google Scholar 

  41. 41.

    Ma D, Sun D, Li Y, Wang C, Xiea Y, Guo T (2015) Effect of nitrogen fertilization and irrigation on phenolic content, phenolic acid composition, and antioxidant activity of winter wheat grain. J Sci Food Agric 95:1039–1046

    CAS  Article  Google Scholar 

  42. 42.

    Åkerström A, Forsum Å, Rumpunen K, Jäderlund A, Bång U (2009) Effects of sampling time and nitrogen fertilization on anthocyanidin levels in Vaccinium myrtillus fruits. J Agric Food Chem 57:3340–3345

    Article  Google Scholar 

  43. 43.

    Soubeyrand E, Basteau C, Hilbert G, van Leeuwen C, Delrot S, Gomès E (2014) Nitrogen supply affects anthocyanin biosynthetic and regulatory genes in grapevine cv. Cabernet-Sauvignon berries. Phytochemistry 103:38–49

    CAS  Article  Google Scholar 

  44. 44.

    Hilbert G, Soyer JP, Molot C, Giraudon J, Milin S, Gaudillere JP (2003) Effects of nitrogen supply on must quality and anthocyanin accumulation in berries of cv. Merlot. Vitis 42:69–76

    CAS  Google Scholar 

  45. 45.

    Jeppsson N (2000) The effects of fertilizer rate on vegetative growth, yield and fruit quality, with special respect to pigments, in black chokeberry (Aronia melanocarpa) cv. Viking. J Hortic Sci Biotechnol 83:127–137

    Article  Google Scholar 

  46. 46.

    Albert T, Karp K, Starast M, Moor U, Paal T (2011) Effect of fertilization on the lowbush blueberry productivity and fruit composition in peat soil. J Plant Nutr 34:1489–1496

    CAS  Article  Google Scholar 

  47. 47.

    Ali L, Alsanius BW, Rosberg AK, Svensson B, Nielsen T, Olsson ME (2012) Effects of nutrition strategy on the levels of nutrients and bioactive compounds in blackberries. Eur Food Res Technol 243:33–44

    Article  Google Scholar 

  48. 48.

    Michalskaa A, Wojdyłob A, Bogucka B (2016) The influence of nitrogen and potassium fertilisation on the content of polyphenolic compounds and antioxidant capacity of coloured potato. J Food Comp Anal 47:69–75

    Article  Google Scholar 

  49. 49.

    Mudau TN, Soundy P, Du Toits ES (2007) Nitrogen, phosphorus and potassium nutrition increases growth and total polyphenol concentrations of bush tea in a shaded nursery environment. HortTechnology 17:107–110

    CAS  Google Scholar 

  50. 50.

    Anttonen MJ, Hoppula KJ, Nestby R, Verheul MJ, Karjalainen RO (2006) Influence of fertilization, mulch colour, early forcing, fruit order, planting date, shading, growing environment, and genotype on contents of selected phenolics in strawberry (Fragaria × ananassa Duch.) fruits. J Agric Food Chem 54:2614–2620

    CAS  Article  Google Scholar 

  51. 51.

    Piccaglia R, Marotti M, Baldoni G (2002) Factors influencing anthocyanin content in red cabbage (Brassica oleracea var capitata L. f rubra (L.) Thell). J Sci Food Agric 82:1504–1509

    CAS  Article  Google Scholar 

  52. 52.

    Hamouz K, Lachman J, Dvořák P, Jůzl M, Pivec V (2006) The effect of site conditions, variety and fertilization on the content of polyphenols in potato tubers. Plant Soil Environ 52:407–412

    CAS  Google Scholar 

  53. 53.

    Hamouz K, Lachman J, Hejtmánková K, Pazderů K, Čížek M, Dvořák P (2010) Effect of natural and growing conditions on the content of phenolics in potatoes with different flesh colour. Plant Soil Environ 56:368–374

    CAS  Google Scholar 

  54. 54.

    De Pascale S, Maggio A, Pernice R, Fogliano V, Barbieri G (2007) Sulphur fertilization may improve the nutritional value of Brassica rapa L. subsp. sylvestris. Eur J Agron 26:418–424

    Article  Google Scholar 

  55. 55.

    Zhou C, Zhu Y, Luo Y (2013) Effect of sulfur fertilization on the accumulation of health-promoting phytochemicals in radish sprouts. J Agric Food Chem 61:7552–7559

    CAS  Article  Google Scholar 

  56. 56.

    Dixon R, Paiva N (1995) Stress-induced phenylpropanoid metabolism. Plant Cell 7:1085–1097

    CAS  Article  Google Scholar 

  57. 57.

    Stracke BA, Rüfer CE, Weibel FP, Bub A, Watzl B (2009) Three-year comparison of the polyphenol contents and antioxidant capacities in organically and conventionally produced apples (Malus domestica Bork. Cultivar “golden delicious”). J Agric Food Chem 57:4598–4605

    CAS  Article  Google Scholar 

  58. 58.

    Valavanidis A, Vlachogianni T, Psomas A, Zovoili A, Slatis V (2009) Polyphenolic profile and antioxidant activity of five apple cultivars grown under organic and conventional agricultural practices. Int J Food Sci Technol 44:1167–1175

    CAS  Article  Google Scholar 

  59. 59.

    Mikulic Petkovsek M, Slatnar A, Stampar F, Verberic R (2010) The influence of organic/integrated production on the content of phenolic compounds in apple leaves and fruits in four different varieties over a 2-year period. J Sci Food Agric 90:2366–2378

    Article  Google Scholar 

  60. 60.

    Lombardo-Boccia G, Lucarini M, Lanzi S, Aguzzi A, Cappelloni M (2004) Nutrients and antioxidant molecules in yellow plums (Prunus domestica L.) from conventional and organic productions: a comparative study. J Agric Food Chem 52:90–94

    Article  Google Scholar 

  61. 61.

    Vian MA, Tomao V, Coulomb PO, Lacomb JM, Dangles O (2006) Comparison of the anthocyanin composition during ripening of Syrah grapes grown using organic or conventional agricultural practice. J Agric Food Chem 54:5230–5235

    CAS  Article  Google Scholar 

  62. 62.

    Tassoni A, Tango N, Ferri M (2013) Comparison of biogenic amine and polyphenol profiles of grape berries and wines obtained following conventional, organic and biodynamic agricultural and oenological practices. Food Chem 139:405–413

    CAS  Article  Google Scholar 

  63. 63.

    Tarozzi A, Hrelia S, Angeloni C, Morroni F, Biag P, Guardigli M, Cantelli-Forti G, Hrelia P (2006) Antioxidant effectiveness of organically and non-organically grown red oranges in cell culture systems. Eur J Nutr 45:152–158

    CAS  Article  Google Scholar 

  64. 64.

    Letaief H, Zemni H, Mliki A, Chebil S (2016) Composition of Citrus sinensis (L.) Osbeck cv. «Maltaise demi-sanguine» juice. A comparison between organic and conventional farming. Food Chem 194:290–295

    CAS  Article  Google Scholar 

  65. 65.

    Asami DK, Hong Y-J, Barrett DM, Mitchell AE (2003) Comparison of the total phenolic and ascorbic acid content of freeze-dried and air-dried marionberry, strawberry and corn using conventional, organic and sustainable agricultural practices. J Agric Food Chem 51:1237–1241

    CAS  Article  Google Scholar 

  66. 66.

    D’Evoli L, Tarozzi A, Hrelia P, Lucarini M, Cocchiola M, Gabrielli P, Franco F, Cantelli-Forti Morroni F, Lombardi-Boccia G (2010) Influence of cultivation system on bioactive molecules synthesis in strawberries: spin-off on antioxidant and antiproliferative activity. J Food Sci 75:C95–C99

    Article  Google Scholar 

  67. 67.

    Carbonaro M, Mattera M (2001) Polyphenoloxidase activity and polyphenol levels in organically and conventionally grown peach (Prunus persica L., cv. Regina bianca) and pear (Pyrus communis L., cv. Williams). Food Chem 72:419–424

    CAS  Article  Google Scholar 

  68. 68.

    Wang SY, Che C-T, Sciarappa W, Wang CY, Camp MJ (2008) Fruit quality, antioxidant capacity, and flavonoid content of organically and conventionally grown blueberries. J Agric Food Chem 56:5788–5794

    CAS  Article  Google Scholar 

  69. 69.

    Anttonen MJ, Karjalainen RO (2006) High-performance liquid chromatography analysis of black currant (Ribes nigrum L.) fruit phenolics grown either conventionally or organically. J Agric Food Chem 54:7530–7538

    CAS  Article  Google Scholar 

  70. 70.

    Chassy AW, Bui L, Renaud ENC, Van Horn M, Mitchell AE (2006) Three-year comparison of the content of antioxidant microconstituents and several quality characteristics in organic and conventionally managed tomatoes and bell peppers. J Agric Food Chem 54:8244–8252

    CAS  Article  Google Scholar 

  71. 71.

    Juroszek P, Lumpkin HM, Yang R-Y, Ledesma DR, Ma C-H (2009) Fruit quality and bioactive compounds with antioxidant activity of tomatoes grown on-farm: comparison of organic and conventional management systems. J Agric Food Chem 57:1188–1194

    CAS  Article  Google Scholar 

  72. 72.

    Anton D, Matt D, Pedastaar P, Bender I, Kazimierczak R, Roasto M, Kaart T, Luik A, Püssa T (2014) Three-year comparative study of polyphenol contents and antioxidant capacities in fruits of tomato (Lycopersicon esculentum Mill.) cultivars under organic and conventional conditions. J Agric Food Chem 62:5173–5180

    CAS  Article  Google Scholar 

  73. 73.

    Vinha AF, Barreira SVP, Costa ASG, Alves RC, Oliveira MBPP (2014) Organic versus conventional tomatoes: influence on physicochemical parameters, bioactive compounds and sensorial attributes. Food Chem Toxicol 67:139–144

    CAS  Article  Google Scholar 

  74. 74.

    Caris-Veyrat C, Amiot MJ, Tyssandier V, Grassell D, Buret M, Mikolajczak M, Guilland JC, Bouteloup-Demange C, Borel P (2004) Influence of organic versus conventional agricultural practice on the antioxidant microconstituent content of tomatoes and derived purees; consequences on antioxidant plasma status in humans. J Agric Food Chem 52:6503–6509

    CAS  Article  Google Scholar 

  75. 75.

    Durazzo A, Azzini E, Foddai MS, Nobili F, Garaguso I, Raguzzini A, Finotti E, Tisselli V, Del Vecchio S, Piazza C, Perenzin M, Plizzari L, Maiani G (2010) Influence of different crop management practices on the nutritional properties and benefits of tomato—Lycopersicon esculentum cv. Perfectpeel. Int J Food Sci Technol 45:2637–2644

    CAS  Article  Google Scholar 

  76. 76.

    Mitchell AE, Hong Y-J, Koh E, Barrett DM, Bryant DE, Ford Denison R, Kaffka S (2007) Ten-year comparison of the influence of organic and conventional crop management practices on the content of flavonoids in tomatoes. J Agric Food Chem 55:6154–6159

    CAS  Article  Google Scholar 

  77. 77.

    Szafirowska A, Elkner K (2009) The comparison of yielding and nutritive value of organic and conventional pepper fruits. Veg Crop Res Bull 71:111–121

    Google Scholar 

  78. 78.

    del Amor FM, Serrano-Martínez A, Fortea I, Núñez-Delicado E (2008) Differential effect of organic cultivation on the levels of phenolics, peroxidase and capsidiol in sweet peppers. J Sci Food Agric 88:770–777

    Article  Google Scholar 

  79. 79.

    Kim GD, Lee YS, Cho J-Y, Lee YH, Choi KJ, Lee Y, Han T-H, Lee S-H, Park KH, Moon J-H (2010) Comparison of the content of bioactive substances and the inhibitory effects against rat plasma oxidation of conventional and organic hot peppers (Capsicum annuum L.). J Agric Food Chem 58:12300–12306

    CAS  Article  Google Scholar 

  80. 80.

    Marín A, Gil MI, Flores P, Hellín P, Selma MV (2008) Microbial quality and bioactive constituents of sweet peppers from sustainable production systems. J Agric Food Chem 56:11334–11341

    Article  Google Scholar 

  81. 81.

    Raigón MD, Rodríguez-Burruezo A, Prohens J (2010) Effects of organic and conventional cultivation methods on composition of eggplant fruits. J Agric Food Chem 58:6833–6840

    Article  Google Scholar 

  82. 82.

    Luthria D, Singh AP, Wilson T, Vorsa N, Banuelos GS, Vinyard BT (2010) Influence of conventional and organic agricultural practices on the phenolic content in eggplant pulp: plant-to-plant variation. Food Chem 121:406–411

    CAS  Article  Google Scholar 

  83. 83.

    Bavec M, Turinek M, Grobelnik-Mlakar S, Slatnar A, Bavec F (2010) Influence of industrial and alternative farming systems on content of sugars, organic acids, total phenolic content, and the antioxidant activity of red beet (Beta vulgaris L. ssp. Vulgaris Rote Kugel). J Agric Food Chem 58:11825–11831

    CAS  Article  Google Scholar 

  84. 84.

    Heimler D, Vignolini P, Arfaioli P, Isolani L, Romani A (2012) Conventional, organic and biodynamic farming: differences in polyphenol content and antioxidant activity of Batavia lettuce. J Sci Food Agric 92:551–556

    CAS  Article  Google Scholar 

  85. 85.

    Sousa C, Valenão P, Rangel J, Lopes G, Pereira JA, Ferreres F, Seabra RM, Andrade P (2005) Influence of two fertilization regimens on the amounts of organic acids and phenolic compounds of tronchuda cabbage (Brassica oleracea L. var. costata DC). J Agric Food Chem 53:9128–9132

    CAS  Article  Google Scholar 

  86. 86.

    Koh E, Charoenprasert S, Mitchell AE (2012) Effect of organic and conventional cropping systems on ascorbic acid, vitamin C, flavonoids, nitrate, and oxalate in 27 varieties of spinach (Spinacia oleracea L.). J Agric Food Chem 60:3144–3150

    CAS  Article  Google Scholar 

  87. 87.

    Søltoff M, Nielsen J, Holst Laursen K, Husted S, Halekoh U, Knuthsen P (2010) Effects of organic and conventional growth systems on the content of flavonoids in onions and phenolic acids in carrots and potatoes. J Agric Food Chem 58:10323–10329

    Article  Google Scholar 

  88. 88.

    Picchi V, Migliori C, Lo Scalzo R, Campanelli G, Ferrari V, Di Cesare LF (2012) Phytochemical content in organic and conventionally grown Italian cauliflower. Food Chem 130:501–509

    CAS  Article  Google Scholar 

  89. 89.

    Valverde J, Reilly K, Villacreces S, Gaffney M, Granta J, Brunton N (2015) Variation in bioactive content in broccoli (Brassica oleracea var. italica) grown under conventional and organic production systems. J Sci Food Agric 95:1163–11761

    CAS  Article  Google Scholar 

  90. 90.

    Heimler D, Isolani L, Vignolini P, Romani A (2009) Polyphenol content and antiradical activity of Cichorium intybus L. from biodynamic and conventional farming. Food Chem 114:765–770

    CAS  Article  Google Scholar 

  91. 91.

    Dimberg LH, Gissén C, Nilsson J (2005) Phenolic compounds in oat grains (Avena sativa L.) grown in conventional and organic systems. Ambio 34:331–337

    Article  Google Scholar 

  92. 92.

    Kesarwani A, Chiang P-Y, Chen S-S (2014) Distribution of phenolic compounds and antioxidant activities of rice kernel and their relationships with agronomic practice. Sci World J ID. doi:10.1155/2014/620171

    Google Scholar 

  93. 93.

    Pace Pereira Lima G, da Rocha SA, Takaki M, Rodrigues Ramos PR, Orika Ono E (2008) Comparison of polyamine, phenol and flavonoid contents in plants growing under conventional and organic methods. Int J Food Sci Technol 43:1838–1843

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Annalisa Romani.

Ethics declarations

Conflict of interest

None.

Compliance with ethics requirements

This article does not contain any studies with human or animal subjects.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Heimler, D., Romani, A. & Ieri, F. Plant polyphenol content, soil fertilization and agricultural management: a review. Eur Food Res Technol 243, 1107–1115 (2017). https://doi.org/10.1007/s00217-016-2826-6

Download citation

Keywords

  • Flavonoids
  • Anthocyanins
  • N-fertilization
  • Conventional management
  • Organic management
  • Biodynamic management