Skip to main content
Log in

Isolation and identification of terpenoids from chicory roots and their inhibitory activities against yeast α-glucosidase

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Chicory (Cichorium intybus L.var. sativum L., Asteraceae) is a multipurpose plant cultivated as vegetable and coffee substitute in Europe and North America, also as folk medicine in China. The extracts from chicory roots showed significant effect on inhibition against α-glucosidase. By a bioassay-guided approach, the chemical fraction with high α-glucosidase inhibition was found and its chemical profile was tentatively described by UPLC-Q-TOF/MS to include 28 compounds. Further chemical isolation yielded six compounds, their chemical structures were elucidated as 11β-13-dihydrolactucin (1), lactucin (2), 8-deoxylactucin (3), jacquinelin (4), 11β,13-dihydrolactucopicrin (5) and lactucopicrin (6), and among them, the compound 4 showed the strongest inhibitory activity against yeast α-glucosidase with IC50 value of 4.180 μM. The present results suggest that chicory roots can eventually exhibit anti-diabetic effect and the sesquiterpenes may be responsible for the activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Plmuier W (1972) Chicory improvement. Revueder Agric 4:567–585

    Google Scholar 

  2. Wang Q, Cui J (2011) Perspectives and utilization technologies of chicory (Cichorium intybus L.): a review. Afr J Biotechnol 10(11):1966–1977

    CAS  Google Scholar 

  3. Vanstreels E, Lammertyn J, Verlinden BE, Gillis N, Schenk A, Nicolaı̈ BM (2002) Red discoloration of chicory under controlled atmosphere conditions. Postharvest Biol Technol 26(3):313–322

    Article  Google Scholar 

  4. Robert C, Emaga TH, Wathelet B, Paquot M (2008) Effect of variety and harvest date on pectin extracted from chicory roots (Cichorium intybus L.). Food Chem 108(3):1008–1018

    Article  CAS  Google Scholar 

  5. Bais HP, Ravishankar GA (2001) Cichorium intybus L.—cultivation, processing, utility, value addition and biotechnology, with an emphasis on current status and future prospects. J Sci Food Agric 81(5):467–484

    Article  CAS  Google Scholar 

  6. Schoofs J, Langhe ED (1988) Chicory (Cichorium intybus L.). Springer, Berlin, pp 294–321

    Google Scholar 

  7. Joseph C, Billot J, Soudain P, Côme D (2006) The effect of clod, anoxia and ethylene on the flowering ability of buds of C. intybus L. Physiol Plant 65(2):146–150

    Article  Google Scholar 

  8. Petrovic J, Stanojkovic A, Comic L, Curcic S (2004) Antibacterial activity of Cichorium intybus. Fitoterapia 75(7–8):737–739

    Article  CAS  Google Scholar 

  9. Huang S, Lin Z, Zhang B, Geng D, Niu H, Zhu C, Wang X, Sun B (2015) Effect of chicory on uric acid and uricopoiesis metabolic enzymes activities of hyperuricemia quail. Tradit Chin Drug Res Clin Pharm 26:9–13

    Google Scholar 

  10. Gray RS, Olefsky JM (1982) Effect of a glucosidase inhibitor on the metabolic response of diabetic rats to a high carbohydrate diet, consisting of starch and sucrose, or glucose. Metabolism 31(1):88–92

    Article  CAS  Google Scholar 

  11. Kallemeijn WW, Witte MD, Wennekes T, Aerts JM (2014) Mechanism-based inhibitors of glycosidases: design and applications. Adv Carbohydr Chem Biochem 71C:297–338

    Article  Google Scholar 

  12. Tahir TA, Brufau J, Perez AM (2004) Potential role of glycosidase inhibitors in industrial biotechnological applications. BBA Proteins Proteom 1696(2):275–287

    Article  Google Scholar 

  13. Bischoff TA, Kelley CJ, Karchesy Y, Laurantos M, Nguyen-Dinh P, Arefi AG (2004) Antimalarial activity of Lactucin and Lactucopicrin: sesquiterpene lactones isolated from Cichorium intybus L. J Ethnopharmacol 95(2–3):455–457

    Article  CAS  Google Scholar 

  14. Pistia-Brueggeman G, Hollingsworth RI (2001) A preparation and screening strategy for glycosidase inhibitors. Tetrahedron 57(42):8773–8778

    Article  CAS  Google Scholar 

  15. Malarz J, Stojakowska A, Kisiel W (2002) Sesquiterpene lactones in a hairy root culture of Cichorium intybus. Z Naturforsch C 57(11–12):994–997

    CAS  Google Scholar 

  16. Trute A, Nahrstedt A (1997) Identification and quantitative analysis of phenolic compounds from the dry extract of Hedera helix. Planta Med 63(2):177–179

    Article  CAS  Google Scholar 

  17. Beek TAV, Maas P, King BM, Leclercq E, Voragen AGJ, Groot AD (1990) Bitter sesquiterpene lactones from chicory roots. J Agric Food Chem 38(4):1035–1038

    Article  Google Scholar 

  18. Kim KH, Lee KH, Sang UC, Kim YH, Kang RL (2008) Terpene and phenolic constituents of Lactuca indica L. Arch Pharm Res 31(8):983–988

    Article  CAS  Google Scholar 

  19. Seto M, Miyase T, Umehara K, Ueno A, Hirano Y, Otani N (1988) Sesquiterpene lactones from Cichorium endivia L. and C. intybus L. and cytotoxic activity. Chem Pharm Bull 36(7):2423–2429

    Article  CAS  Google Scholar 

  20. Kisiel W, Zielinska K (2001) ChemInform abstract: guaianolides from Cichorium intybus and structure revision of Cichorium sesquiterpene lactones. Phytochemistry 57(4):523–527

    Article  CAS  Google Scholar 

  21. Tanaka H, Oh-Uchi T, Etoh H, Sako M, Sato M, Fukai T, Tateishi Y (2003) An arylbenzofuran and four isoflavonoids from the roots of Erythrina poeppigiana. Phytochemistry 63(5):597–602

    Article  CAS  Google Scholar 

  22. Wa A (1952) Effect of scopoletin on indolacetic acid metabolism. Nature 170(170):83–84

    Google Scholar 

  23. Pyrek JS (1985) Sesquiterpene lactones of Cichorium intybus and Leontodon autumnalis. Phytochemistry 24(1):186–188

    Article  Google Scholar 

  24. Singleton VL, Zaya J, Trousdale E, Salgues M (1984) Caftaric acid in grapes and conversion to a reaction product during processing. Vitis 23(2):113–120

    CAS  Google Scholar 

  25. Ong KC, Khoo H-E (1997) Biological effects of myricetin. Gen Pharmacol 29(2):121–126

    Article  CAS  Google Scholar 

  26. Rees SB, Harborne JB (1985) The role of sesquiterpene lactones and phenolics in the chemical defence of the chicory plant. Phytochemistry 24(10):2225–2231

    Article  CAS  Google Scholar 

  27. Liu JL, Yuan D, Ding JG, Dong XN, Dou GF, Zhuo-Na WU, Meng ZY (2010) Study on the metabolites of 1,5-dicaffeoylquinic acid in human urine by LC-ESI/MS/MS assay. Chin J Clin Pharmcol 3:018

    Google Scholar 

  28. Marco JA, Sanz JF, Carda M (1992) Sesquiterpene lactones from Picris echioides. Phytochemistry 31(31):2163–2164

    Article  CAS  Google Scholar 

  29. Na ZE, Cho JY, Lee HJ, Jin HC, Park KD, Lee YJ, Shin SC, Rim YS, Park KH, Moon JH (2007) Complete 1 H and 13 C NMR assignments of sesquiterpene glucosides from Ixeris sonchifolia. Magn Reson Chem 45(3):275–278

    Article  CAS  Google Scholar 

  30. Gould RG, Richard JJ, George VL, Robert WW, Taylor CB (1969) Absorbability of β-sitosterol in humans. Metabolism 18(8):652–662

    Article  CAS  Google Scholar 

  31. Appel H, Robinson R (1935) 93. The transformation of d-catechin into cyanidin chloride. J Chem Soc. doi:10.1039/JR9350000426

    Google Scholar 

  32. Picman AK (1986) Biological activities of sesquiterpene lactones. Biochem Syst Ecol 14(3):255–281

    Article  CAS  Google Scholar 

  33. Yang WZ, Hao W, Jing S, Feng F (2009) Chemical constituents from Cichorium glandulosum. Chin J Nat Med 7(3):193–195

    Article  CAS  Google Scholar 

  34. Barrera JB, Bretón Funes JL, González González A (1966) Terpenoids of the Sonchus. Part III. Sesquiterpene lactones of S. Jacquini D.C., S. pinnatus Ait, and S. radicatus Ait. J Chem Soc C. doi:10.1039/J39660001298

    Google Scholar 

  35. Adegawa S, Miyase T, Ueno A, Noro T, Kuroyanagi M, Fukushima S (1985) Sesquiterpene glycosides from Crepidiastrum keiskeanum NAKAI. Chem Pharm Bull 33(11):4906–4911

    Article  Google Scholar 

  36. Deng Y, Scott L, Swanson D, Snyder JK, Sari N, Dogan H (2001) Guaianolide Sesquiterpene lactones from Cichorium intybus (Asteraceae)[1]. Z Naturforsch B 56(8):787–796

    Article  CAS  Google Scholar 

  37. Chaturvedi D (2011) Sesquiterpene lactones: structural diversity and their biological activities, in-opportunity, challenges and scope of natural products in medicinal chemistry. Research Signpost, Trivandrum, pp 313–334

    Google Scholar 

  38. Zhou CXQD, Yan YY et al (2012) A new anti-diabetic sesquiterpenoid from Acorus calamus. Chin Chem Lett 23(10):1165–1168

    Article  CAS  Google Scholar 

  39. Park H, Hwang KY, Oh KH, Kim YH, Lee JY, Kim K (2008) Discovery of novel α-glucosidase inhibitors based on the virtual screening with the homology-modeled protein structure. Bioorg Med Chem 16(1):284–292

    Article  CAS  Google Scholar 

  40. Mansour SA, Ibrahim RM, El-Gengaihi SE (2014) Insecticidal activity of chicory (Cichorium intybus L.) extracts against two dipterous insect-disease vectors: mosquito and housefly. Ind Crops Prod 54(4):192–202

    Article  CAS  Google Scholar 

  41. Reaven GM (1988) Role of insulin resistance in human disease. Diabetes 37(1):1595–1607

    Article  CAS  Google Scholar 

  42. Cheng AYY, Josse RG (2004) Intestinal absorption inhibitors for type 2 diabetes mellitus: prevention and treatment. Drug Discov Today Ther Strateg 1(2):201–206

    Article  CAS  Google Scholar 

  43. Naik SR, Kokil GR (2013) Development and discovery avenues in bioactive natural products for glycemic novel therapeutics. Stud Nat Prod Chem 39:431–466

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the grant from Jiangsu Scientific and Technological Innovations Platform (No. BM2011117).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bingru Ren or Weilin Li.

Ethics declarations

Conflict of interest

None.

Compliance with ethics requirements

This article does not contain any studies with human or animal subjects.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, H., Chen, J., Lv, H. et al. Isolation and identification of terpenoids from chicory roots and their inhibitory activities against yeast α-glucosidase. Eur Food Res Technol 243, 1009–1017 (2017). https://doi.org/10.1007/s00217-016-2810-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-016-2810-1

Keywords

Navigation