European Food Research and Technology

, Volume 243, Issue 4, pp 547–554 | Cite as

Glucoraphenin, sulforaphene, and antiproliferative capacity of radish sprouts in germinating and thermal processes

  • Ruimin Li
  • Dan Song
  • Frank Vriesekoop
  • Li Cheng
  • Qipeng Yuan
  • Hao LiangEmail author
Original Paper


Glucoraphenin, the predominant glucosinolate in radish sprouts, is hydrolyzed by myrosinase to sulforaphene that is implicated to exert anticancerogenic effects. The effects of germination and subsequent cooking processes on the levels of glucoraphenin and its hydrolysis products were investigated in this research. HPLC analysis revealed that the levels of glucoraphenin and sulforaphene decreased with germination time. In agreement with the above results, the antiproliferation activity of radish sprouts extracts on human lung cancer cells was also found to decline gradually in line with the germination process. Furthermore, when we applied three traditional cooking treatments to radish sprouts, the glucoraphenin and sulforaphene were markedly decreased; while the antiproliferation activity of cooked radish sprouts was considerably decreased. This research showed that 3-day-old radish sprouts are an excellent source of bioactive compounds that could potentially benefit human health, while any cooking process appears to cause the devastation of beneficial attributes in radish sprouts.


Radish sprouts Glucoraphenin Sulforaphene Degradation Antiproliferation 



The authors acknowledge financial support from the Beijing Natural Science Foundation (2162030), China Scholarship Council, the Fundamental Research Funds for the Central Universities (YS1407), and the National High Technology Research and Development Program of China (863 Program, Grant No. 2014AA021705).

Compliance with ethical standards

Conflict of interest

The research has no conflict of interest.

Compliance with ethics requirements

This article does not contain any studies with human or animal subjects.


  1. 1.
    Ambrosone CB, McCann SE, Freudenheim JL, Marshall JR, Zhang Y, Shields PG (2004) J Nutr 134:1134–1138Google Scholar
  2. 2.
    Joseph MA, Moysich KB, Freudenheim JL, Shiedlds PG, Bowman ED, Zhang Y, Marshall JR, Ambrosone CB (2004) Nut Cancer 50:206–213CrossRefGoogle Scholar
  3. 3.
    Neuhouser ML, Patterson RE, Thornquist MD, Omenn GS, King IB, Goodman GE (2003) Cancer EpidemBiomar 12:350–358Google Scholar
  4. 4.
    Voorips LE, Goldbohm RA, Verhoeven DT, van Poppel GA, Sturmans F, Hermus RJ, van den Brandt PA (2000) Cancer Causes Control 11(2):1010–1015Google Scholar
  5. 5.
    Nastruzzi C, Cortest R, Esposito E, Menegatti E, Leoni O, Iori L, Palmieri S (1996) J Agric Food Chem 44:1014–1021CrossRefGoogle Scholar
  6. 6.
    Vaughn SF, Berhow MA (2005) Ind Crops Prod 21:193–202CrossRefGoogle Scholar
  7. 7.
    Fenwick GR, Heaney RK (1983) Food Chem 11(4):249–271CrossRefGoogle Scholar
  8. 8.
    Liang H, Lai BT, Yuan QP (2008) J Nat Prod 71:1911–1914CrossRefGoogle Scholar
  9. 9.
    Zhang YS (2004) Res Fund Mol M 555:173–190CrossRefGoogle Scholar
  10. 10.
    Zhang YS, Tang L (2004) Acta Pharmacol Sin 28(9):1343–1354CrossRefGoogle Scholar
  11. 11.
    Ciska E, Honke J, Kozlowska H (2008) J Agric Food Chem 56:9087–9093CrossRefGoogle Scholar
  12. 12.
    Kim HJ, Chen F, Choi JH (2006) J Agric Food Chem 54:7263–7269CrossRefGoogle Scholar
  13. 13.
    Martinez-Villaluenga C, Penas E, Ciska E, Piskula MK, Kozlowska H, Vidal-Valverde C, Frias J (2010) Food Chem 120:710–716CrossRefGoogle Scholar
  14. 14.
    Yuan GF, Wang XP, Guo RF, Wang QM (2010) Food Chem 121:1014–1019CrossRefGoogle Scholar
  15. 15.
    Zhou CG, Zhu Y, Luo YB (2013) J Agric Food Chem 61:7552–7559CrossRefGoogle Scholar
  16. 16.
    Papi A, Orlandi M, Bartolini G, Barillari J, Iori R (2008) J Agric Food Chem 56:875–883CrossRefGoogle Scholar
  17. 17.
    Song D, Liang H, Kuang PQ, Tang P, Hu GF, Yuan QP (2013) J Agric Food Chem 61:5097–5102CrossRefGoogle Scholar
  18. 18.
    Zhang X, Liu HB, Jia JJ, Lv WH (2010) J Asian Nat Prod Res 2010:113–118CrossRefGoogle Scholar
  19. 19.
    Jones RB, Frisina CL, Winkler S, Imsic M, Tomkins RB (2012) Food Chem 123:237–242CrossRefGoogle Scholar
  20. 20.
    Wang GC, Farnham M, Jeffery EH (2012) J Agric Food Chem 60:6743–6748CrossRefGoogle Scholar
  21. 21.
    Rungapamestry V, Duncan A, Fuller Z, Ratcliffe B (2006) J Agric Food Chem 54:7628–7634CrossRefGoogle Scholar
  22. 22.
    Verkerk R, Dekker M (2004) J Agric Food Chem 52:7318–7323CrossRefGoogle Scholar
  23. 23.
    Kuang PQ, Song D, Lv XH, Zhao D, Liang H, Yuan QP (2013) Food Chem 136:309–315CrossRefGoogle Scholar
  24. 24.
    Clarke JD, Hsu A, Riedl K, Bella D, Schwartz SJ, Stevens JF, Ho E (2011) Pharmacol Res 64:456–463CrossRefGoogle Scholar
  25. 25.
    Li X, Kushad MM (2005) Plant Physiol Bioch 43:503–511CrossRefGoogle Scholar
  26. 26.
    Bradford MM (1976) Anal biochemistry 72:248–254CrossRefGoogle Scholar
  27. 27.
    Hanlon PR, Webber DM, Barnes DM (2007) J Agric Food Chem 55:6439–6446CrossRefGoogle Scholar
  28. 28.
    Frias J, Gulewicz P, Villaluenga CM, Penas E, Piskula MK, Kozlowska H, Ciska E, Gulewicz K, Valverde CV (2010) J Agric Food Chem 58:2331–2336CrossRefGoogle Scholar
  29. 29.
    Frias J, Gulewicz P, Villaluenga CM, Pilarski R, Blazquez E, Jimenez B, Gulewicz K, Valverde CV (2009) J Agric Food Chem 57:1319–1325CrossRefGoogle Scholar
  30. 30.
    Perez-Bzlibrea S, Moreno DA, Garcia-Viguera C (2010) J Food Sci 75:C673–C677CrossRefGoogle Scholar
  31. 31.
    Liang H, Li C, Yuan Q, Vriesekoop F (2007) J Agric Food Chem 55(20):8047–8053CrossRefGoogle Scholar
  32. 32.
    Martínez-Villaluenga C, Frías J, Gulewicz P, Gulewicz K, Vidal-Valerde C (2008) Food Chem Toxicol 46:1635–1644CrossRefGoogle Scholar
  33. 33.
    Zhang YS, Tang L, Gonzalez V (2003) Mol Cancer Ther 2:1045–1052Google Scholar
  34. 34.
    Vallejo F, Tomás-Barberán FA, García-Viguera C (2002) Eur Food Res Technol 215(4):310–316CrossRefGoogle Scholar
  35. 35.
    Cole RA (1980) J Agric Food Chem 31:549–557CrossRefGoogle Scholar
  36. 36.
    Petroski RJ, Tookey HL (1982) Phytochemistry 21:1903–1905CrossRefGoogle Scholar
  37. 37.
    Chin HW, Lindsay RC (1993) J Food Sci 58:835–839CrossRefGoogle Scholar
  38. 38.
    Kanda K, Tsuruta H (1995) Soil Sci Plant Nutr 41:321–328CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Ruimin Li
    • 1
  • Dan Song
    • 1
    • 2
  • Frank Vriesekoop
    • 3
  • Li Cheng
    • 1
  • Qipeng Yuan
    • 1
  • Hao Liang
    • 1
    Email author
  1. 1.State Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical TechnologyBeijingPeople’s Republic of China
  2. 2.Department of Pharmaceutical EngineeringTianjin Vocational College of BioengineeringTianjinPeople’s Republic of China
  3. 3.Department of Food ScienceHarper Adams UniversityNewportEngland, UK

Personalised recommendations