Skip to main content
Log in

Screening and evolution of volatile compounds during ripening of ‘Nebbiolo,’ ‘Dolcetto’ and ‘Barbera’ (Vitis vinifera L.) neutral grapes by SBSE–GC/MS

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

The evolution of pre-fermentative volatiles and of the global aroma potential in three Italian neutral varieties (‘Nebbiolo,’ ‘Barbera’ and ‘Dolcetto’) was assessed from véraison to harvest by SBSE–GC/MS. C6 and C9 compounds, benzene derivatives, bound monoterpenes and sesquiterpenes showed differences among varieties in quantity and profiles during berry ripening. Quantitatively, the most of total monoterpenes, C-13 norisoprenoids and sesquiterpenes were detected after acid hydrolysis. Among pre-fermentative norisoprenoids, exclusively β-ionone was detected with different kinetics among varieties. Monoterpene accumulation started around véraison with the exception of (E)-geranylacetone, whose content was already high at véraison. (E)-Geranylacetone, deriving from the degradation of carotenoids, could become a target molecule to study indirectly the accumulation of carotenoids. Data allowed to measure the global aroma potential and the pre-fermentative volatiles of grapes: result interpretation suggested a number of implications on biosynthetic processes that have been addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Günata YZ, Bayonove C, BaumesRL CR (1985) The aroma of grapes. 1. Extraction and determination of free and glycosidically bound fractions of some aroma components. J Chromatogr A331:83–90

    Article  Google Scholar 

  2. Salinas MR, ZalacainA PF, Alonso GL (2004) Stir bar sorptive extraction applied to volatile constituents evolution during Vitis vinifera ripening. J Agric Food Chem 52:4821–4827

    Article  CAS  Google Scholar 

  3. Kalua CM, Boss PK (2010) Comparison of major volatile compounds from Riesling and Cabernet Sauvignon grapes (Vitis vinifera L.) from fruitset to harvest. Aust J Grape Wine Res 16:337–348

    Article  CAS  Google Scholar 

  4. Pichersky E, Gershenzon J (2002) The formation and function of plant volatiles: perfumes for pollinator attraction and defense. Curr Opin Plant Biol 5:237–243

    Article  CAS  Google Scholar 

  5. Matsui K (2006) Green leaf volatiles: hydroperoxide lyase pathway of oxylipin metabolism. Curr Opin Plant Biol 9:274–280

    Article  CAS  Google Scholar 

  6. Yang CX, Wang YJ, Liang ZC, Fan PG, Wu BH, Yang L, Wang YN, Li SH (2009) Volatiles of grape berries evaluated at the germplasm level by headspace-SPME with GC–MS. Food Chem 114:1106–1114

    Article  CAS  Google Scholar 

  7. Vilanova M, Genisheva Z, Bescansa L, Masa A, Oliveira JM (2012) Changes in free and bound fractions of aroma compounds of four Vitis vinifera cultivars at the last ripening stages. Phytochemistry 74:196–205

    Article  CAS  Google Scholar 

  8. Oliveira JM, Faria M, Sà F, Barros F, Araùjo IM (2006) C6-alcohols as varietal markers for assessment of wine origin. Anal Chim Acta 563:300–309

    Article  CAS  Google Scholar 

  9. Zhu BQ, Xu XQ, Wu YW, Duan CQ, Pan QH (2012) Isolation and characterization of two hydroperoxide lyase genes from grape berries. Mol Biol Rep 39:7443–7455

    Article  CAS  Google Scholar 

  10. Loscos N, Hernàndez-Orte P, Cacho J, Ferreira V (2009) Comparison of the suitability of different hydrolytic strategies to predict aroma potential of different grape varieties. J Agric Food Chem 57:2468–2480

    Article  CAS  Google Scholar 

  11. Sefton MA, Francis JL, Williams PJ (1993) The volatile composition of Chardonnay juice: a study by flavor precursor analysis. Am J Enol Vitic 44:359–371

    CAS  Google Scholar 

  12. Kotseridis Y, Baumes RL, Skouroumounis GK (1999) Quantitative determination of free and hydrolytically liberated β-damascenone in red grapes and wines using a stable isotope dilution assay. J Chromatogr A 849:245–254

    Article  CAS  Google Scholar 

  13. Pedroza MA, Zalacain A, Lara JF, Salinas MR (2010) Global grape aroma potential and its individual analysis by SBSE–GC–MS. Food Res Int 43:1003–1008

    Article  CAS  Google Scholar 

  14. Williams PJ, Strauss CR, Wilson B, Massy-Westropp RA (1982) Studies on the hydrolysis of Vitis vinifera monoterpene precursor compounds and model β-d-glucosides rationalizing the monoterpene composition of grapes. J Agric Food Chem 30:1219–1223

    Article  CAS  Google Scholar 

  15. Winterhalter P (1991) 1,1,6-Trimethyl-1,2-dihydronaphthalene (TDN) formation in wine. 1. Studies on the hydrolysis of 2,6,10,10-tetramethyl-1-oxaspiro[4.5]dec-6-ene-2,8-diol rationalizing the origin of TDN and related C13 norisoprenoids in Riesling wine. J Agric Food Chem 39:1825–1829

    Article  CAS  Google Scholar 

  16. Cabrita MJ, Costa Freitas AM, Laureano O, Di Stefano R (2006) Glycosidic aroma compounds of some Portuguese grape cultivar. J Sci Food Agric 86:922–931

    Article  CAS  Google Scholar 

  17. Caven-Quantrill DJ, Buglass AJ (2007) Determination of volatile organic compounds in English vineyard grape juices by immersion stir bar sorptive extraction–gas chromatography/mass spectrometry. Flavour Fragr J 22:206–213

    Article  CAS  Google Scholar 

  18. Ferrandino A, Carlomagno A, Baldassarre S, Schubert A (2012) Varietal and pre-fermentative volatiles during ripening of Vitis vinifera cv Nebbiolo berries from three growing areas. Food Chem 135:2340–2349

    Article  CAS  Google Scholar 

  19. Camino-Sanchez FJ, Rodriguez-Gomez R, Zafra-Gomez A, Santos-Fandila A, Vilchez JL (2014) Stir bar sorptive extraction: recent applications, limitations and future trends. Talanta 130:388–399

    Article  CAS  Google Scholar 

  20. Coelho E, Rocha SM, Barros AS, Delgadillo I, Coimbra MA (2007) Screening of variety and pre-fermentation-related volatile compounds during ripening of white grapes to define their evolution profile. Anal Chim Acta 597:257–264

    Article  CAS  Google Scholar 

  21. May B, Wüst M (2006) Temporal development of sesquiterpene hydrocarbon profiles of different grape varieties during ripening. Flavour Fragr J 27:280–285

    Article  Google Scholar 

  22. Hampel D, Mosandl A, Wust M (2006) Biosynthesis of mono- and sesquiterpenes in strawberry fruits and foliage: H-2 labeling studies. J Agric Food Chem 54:1473–1478

    Article  CAS  Google Scholar 

  23. Versini G, Inama S, Sartori G (1981) A capillary column gas-chromatographic research into the terpene constituents of Riesling Renano wine from Trentino Alto Adige: their distribution within berry, their passage into must and their presence in the wine according to different wine-making procedures. Organoleptic considerations. Vini d’Italia XXIII:189–211

    Google Scholar 

  24. Garcia E, Chacon JL, Martinez J, Izquierdo PM (2003) Changes in volatile compounds during ripening in grapes of Airen, Macabeo and Chardonnay white varieties grown in La Mancha region (Spain). Food Sci Technol Int 9:33–41

    Article  CAS  Google Scholar 

  25. Mosblech A, FeussnerI HI (2009) Oxylipins: structurally diverse metabolites from fatty acid oxidation. Plant Phys Biochem 47:511–517

    Article  CAS  Google Scholar 

  26. Ferreira V, Lòpez R, Cacho JF (2000) Quantitative determination of the odorants of young red wines from different grape varieties. J Sci Food Agric 80:1659–1667

    Article  CAS  Google Scholar 

  27. Dunemann F, Ulrich D, Malysheva-Otto L, Weber WE, Longhi S, Velasco R, Costa F (2012) Functional allelic diversity of the apple alcohol acyl-transferase gene MdAAT1 associated with fruit ester volatile contents in apple cultivars. Mol Breed 29:609–621

    Article  CAS  Google Scholar 

  28. Li D, Shen J, Wu T, Xu YF, Zong XJ, Li DQ, Shu HR (2008) Overexpression of the apple alcohol acyltransferase gene alters the profile of volatile blends in transgenic tobacco leaves. Physiol Plant 134:394–402

    Article  CAS  Google Scholar 

  29. De Rosso M, Panighel A, Carraro R, Padoan E, Favaro A, Dalle Vedove A, Flamini R (2010) Chemical characterization and enological potential of Raboso varieties by study secondary grape metabolites. J Agric Food Chem 58:11364–11371

    Article  Google Scholar 

  30. SchwabW D-RR, Lewinsohn E (2008) Biosynthesis of plant-derived flavor compounds. Plant J 54:712–732

    Article  Google Scholar 

  31. Lücker J, Bowen P, Bohlmann J (2006) Vitis vinifera terpenoid cyclases: functional identification of two sesquiterpene synthase cDNAs encoding (+)-valencene synthase and (−)-germacrene D synthase and expression of mono- and sesquiterpene synthases in grapevine flowers and berries. Phytochemistry 65:2649–2659

    Article  Google Scholar 

  32. Sweetman C, Wong DCJ, Ford CM, Drew DP (2013) Transcriptome analysis at four developmental stages of grape berry (Vitis vinifera cv. Shiraz) provides insights into regulated and coordinated gene expression. BMC Genom 13:691–714

    Article  Google Scholar 

  33. Berli FJ, Moreno D, Piccoli P, Hespanhol-Viana L, Fernanda Silva M, Bressan Smith R, Cagnaro BJ, Bottini R (2010) Abscisic acid is involved in the response of grape (Vitis vinifera L.) cv. Malbec leaf tissues to ultraviolet-B radiation by enhancing ultraviolet-absorbing compounds, antioxidant enzymes and membrane sterols. Plant Cell Environ 33:1–10

    CAS  Google Scholar 

  34. Ferrandino A, Lovisolo C (2014) Abiotic stress effects on grapevine (Vitis vinifera L.): focus on abscissic acid-mediated consequences on secondary metabolism and berry quality. Environ Exp Bot 103:138–147

    Article  CAS  Google Scholar 

  35. Fan W, Xu Y, Jiang W, Li J (2010) Identification and quantification of impact aroma compounds in 4 nonfloral Vitis vinifera grapes. J Food Sci 75:81–88

    Article  Google Scholar 

  36. Park SK, Morrison JC, Adams DO, Noble AC (1991) Distribution of free and glycosidic bound monoterpenes in the skin and mesocarp of Muscat of Alexandria during development. J Agric Food Chem 39:514–518

    Article  CAS  Google Scholar 

  37. Hellin P, Manso A, Flores P, Fenoll J (2010) Evolution of aroma and phenolic compounds during ripening of “Superior seedless” grapes. J Agric Food Chem 58:6334–6340

    Article  CAS  Google Scholar 

  38. Di Stefano R, Bottero S, PigellaR Borsa D, Bezzo G, Corino L (1998) Precursori d’aroma glicosilati presenti nelle uve di alcune cultivar a frutto colorato. L’Enotecnico marzo 34:63–74

    Google Scholar 

  39. Williams PJ, Strauss CR, Wilson B (1980) Hydroxylated linalool derivatives as precursors of volatile monoterpenes of Muscat grapes. J Agric Food Chem 28:766–771

    Article  CAS  Google Scholar 

  40. Ribéreau-Gayon P, Glories Y, Maujean A, Dubourdieu D (2003) Trattato di Enologia II. Chimica del vino-Stabilizzazione e trattamenti. Edagricole, Milan

    Google Scholar 

  41. Goff SA, Klee HJ (2006) Plant volatile compounds: sensory cues for health and nutritional value. Science 311:815–819

    Article  CAS  Google Scholar 

  42. Razungles AJ, BaumesRL DC, Sznaper CN, Bayonove CL (1998) Effect of sun exposure on carotenoids an C13-norisoprenoid glycosides in Syrah berries (Vitis vinifera L.). Sci Aliment 18:361–373

    CAS  Google Scholar 

  43. Bindon KA, Dry PR, Loveys BR (2007) Influence of plant water status on the production of C-13 norisoprenoid precursors in Vitis vinifera L. cv. Cabernet Sauvignon grape berries. J Agric Food Chem 55:4493–4500

    Article  CAS  Google Scholar 

  44. Oliveira C, Silva Ferreira AC, Mendes Pinto M, Hogg T, Alves F, Guedes de Pinho P (2003) Carotenoid compounds in grapes and their relationship to plant water status. J Agric Food Chem 51:5967–5971

    Article  CAS  Google Scholar 

  45. Simpson R (1979) Aroma composition of bottle aged white wine. Vitis 18:148–154

    CAS  Google Scholar 

  46. Sefton MA, Skouroumounis GK, Massy-Westropp RA, Williams PJ (1989) Norisoprenoids in Vitis vinifera white wine grapes and the identification of a precursors of damascenone in these fruits. Aust J Chem 42:20171–22084

    Article  Google Scholar 

  47. Marais J, van Wik C, Rapp A (1992) Effect of sunlight and shade on norisoprenoid levels in maturing Weisser Riesling and Bukettraube. S Afr J Enol Vitic 13:23–32

    CAS  Google Scholar 

  48. Coelho E, Rocha SM, Delgadillo I, Coimbra MA (2006) Headspace-SPME applied to varietal volatile components evolution during Vitis vinifera L. cv. “Baga” ripening. Anal Chim Acta 563:204–214

    Article  CAS  Google Scholar 

  49. May B, Lange MB, Wüst M (2013) Biosynthesis of Sesquiterpenes in grape berry exocarp of Vitis vinifera L.: evidence for a transport of farnesyl diphosphate precursors from plastids to the cytosol. Phytochemistry 95:135–144

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors wish to thank the wineries: Ca’ Nueva (Barbaresco, CN), Podere Ruggeri Corsini (Monforte d’Alba, CN) and Pellissero Luigi (Treiso, CN) for vineyard management and grape supplying. Servizio AgrometereologicoRegione Piemonte is gratefully acknowledged for providing meteorological data. Financial support was received from Fondazione Cassa di Risparmio di Cuneo, Project ‘Tracciabilità dei vitigni piemontesi attraverso analisi dellecomponenti aromatiche’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Carlomagno.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Compliance with ethics requirements

This article does not contain any studies with human or animal subjects.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 39 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carlomagno, A., Schubert, A. & Ferrandino, A. Screening and evolution of volatile compounds during ripening of ‘Nebbiolo,’ ‘Dolcetto’ and ‘Barbera’ (Vitis vinifera L.) neutral grapes by SBSE–GC/MS. Eur Food Res Technol 242, 1221–1233 (2016). https://doi.org/10.1007/s00217-015-2626-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-015-2626-4

Keywords

Navigation