Skip to main content

(Bio)degradable polymers as a potential material for food packaging: studies on the (bio)degradation process of PLA/(R,S)-PHB rigid foils under industrial composting conditions


The rigid foils obtained from polylactide (PLA) with synthetic poly[(R,S)-3-hydroxybutyrate] ((R,S)-PHB) can be used for production of food packages, which is important enhancement of biodegradable materials application. The biodegradable rigid packaging can be subjected to organic recycling together with food remains. The degradation of PLA and its blend with (R,S)-PHB as rigid foils were studied under industrial composting conditions. Incubation of these materials in water at 70 °C (hydrolytic degradation) was conducted as reference experiment. Gel permeation chromatography, electrospray mass spectrometry, nuclear magnetic resonance and differential scanning calorimetry were used to determine the progress of degradation during incubation in selected environments. The present results showed that PLA-based rigid foil degrades under industrial composting conditions. In the blends, (R,S)-PHB content was found to accelerate the degradation process under industrial composting conditions in comparison with the reference experiment. Thus, it is possible to control the degradation process by changing the composition of polymer blend.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    Choubisa B, Patel M, Dholakiya B (2013) Synthesis and characterization of polylactic acid (PLA) using a solid acid catalyst system in the polycondensation method. Res Chem Intermed 39:3063–3070

    CAS  Article  Google Scholar 

  2. 2.

    Guan Q, Naguib HE (2014) Fabrication and characterization of PLA/PHBV-chitin nanocomposites and their foams. J Polym Environ 22:119–130

    CAS  Article  Google Scholar 

  3. 3.

    Bartczak Z, Galeski A, Kowalczuk M, Sobota M, Malinowski R (2013) Tough blends of poly(lactide) and amorphous poly([R,S]-3-hydroxy butyrate)—morphology and properties. Eur Polym J 49:3630–3641

    CAS  Article  Google Scholar 

  4. 4.

    Garlotta D (2001) A literature review of poly(lactic acid). J Polym Environ 9:63–84

    CAS  Article  Google Scholar 

  5. 5.

    Rasal RM, Janorkar AV, Hirt DE (2010) Poly(lactic acid) modifications. Prog Polym Sci 35:338–356

    CAS  Article  Google Scholar 

  6. 6.

    Sudesh K, Iwata T (2008) Sustainability of biobased and biodegradable plastics. Clean Soil Air Water 36:433–442

    CAS  Article  Google Scholar 

  7. 7.

    Arias V, Höglund A, Odelius K, Albertsson A-C (2014) Tuning the degradation profiles of poly(l-lactide)-based materials through miscibility. Biomacromolecules 15:391–402

    CAS  Article  Google Scholar 

  8. 8.

    Ren J (2010) Biodegradable poly(lactic acid): synthesis, modification, processing and applications. Springer, Berlin

    Google Scholar 

  9. 9.

    Gandini A (2008) Polymers from renewable resources: a challenge for the future of macromolecular materials. Macromolecules 41:9491–9504

    CAS  Article  Google Scholar 

  10. 10.

    Koller M, SalernoA Dias M, Reiterer A, Braunegg G (2010) Modern biotechnological polymer synthesis: a review. Food Technol Biotechnol 48:255–269

    CAS  Google Scholar 

  11. 11.

    Rutkowska M, Krasowska K, Heimowska A, Adamus G, Sobota M, Musioł M, Janeczek H, Sikorska W, Krzan A, Zagar E, Kowalczuk M (2008) Environmental degradation of blends of atactic poly[(R,S)-3-hydroxybutyrate] with natural PHBV in Baltic Sea water and compost with activated sludge. J Polym Environ 16:183–191

    CAS  Article  Google Scholar 

  12. 12.

    Rydz J, Wolna-Stypka K, Adamus G, Janeczek H, Musioł M, Sobota M, Marcinkowski A, Krzan A, Kowalczuk M (2015) Forensic engineering of advanced polymeric materials. Part 1—degradation studies of polylactide blends with atactic poly[(R,S)-3-hydroxybutyrate] in paraffin. Chem Biochem Eng Quart 29:247–259

    CAS  Article  Google Scholar 

  13. 13.

    Dong W, Ma P, Wang S, Chen M, Cai X, Zhang Y (2013) Effect of partial crosslinking on morphology and properties of the poly(β-hydroxybutyrate)/poly(d, l-lactic acid) blends. Polym Degrad Stab 98:1549–1555

    CAS  Article  Google Scholar 

  14. 14.

    Musioł M, Janeczek H, Jurczyk S, Kwiecień I, Sobota M, Marcinkowski A, Rydz J (2015) (Bio)degradation studies of degradable polymer composites with jute in different environments. Fiber Polym 16:1362–1369

    Article  Google Scholar 

  15. 15.

    Rydz J, Sikorska W, Kyulavska M, Christova D (2015) Polyester-based (bio)degradable polymers as environmentally friendly materials for sustainable development. Int J Mol Sci 16:564–596

    CAS  Article  Google Scholar 

  16. 16.

    Scandola M, Focarete ML, Adamus G, Sikorska W, Baranowska I, Świerczek S, Gnatowski M (1997) Polymer blends of natural poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and synthetic atactic poly(3-hydroxybutyrate). Characterization and biodegradation studies, crystallinity-induced biodegradation of novel [(R,S)-b-butyrolaktone]-b-pivalolactone copolymers. Macromolecules 30:2568–2574

    CAS  Article  Google Scholar 

  17. 17.

    Scandola M, Focarte L, Gazzano M, Matuszowicz A, Sikorska W, Adamus G, Kurcok P, Kowalczuk M, Jedliński Z (1997) Crystallinity-induced biodegradation of novel [(R,S)-β-butyrolactone]-b-pivalolactone copolymers. Macromolecules 30:7743–7748

    CAS  Article  Google Scholar 

  18. 18.

    Kawalec M, Adamus G, Kurcok P, Kowalczuk M (2007) Synthesis of poly[(R,S)-3-hydroxybutyrate-block-ethylene glycol-block-(R,S)-3-hydroxybutyrate]. Macromol Symp 253:59–64

    CAS  Article  Google Scholar 

  19. 19.

    Adamus G, Sikorska W, Janeczek H, Kwiecień M, Sobota M, Kowalczuk M (2012) Novel block copolymers of atactic PHB with natural PHA for cardiovascular engineering: synthesis and characterization. Eur Polym J 48:621–631

    CAS  Article  Google Scholar 

  20. 20.

    Kikkawa Y, Suzuki T, Tsuge T, Kanesato M, Doi Y, Abe H (2006) Phase structure and enzymatic degradation of poly(l-lactide)/atactic poly(3-hydroxybutyrate) blends: an atomic force microscopy study. Biomacromolecules 7:1921–1928

    CAS  Article  Google Scholar 

  21. 21.

    EN 13432:2000: Packaging. Requirements for packaging recoverable through composting and biodegradation. Test scheme and evaluation criteria for the final acceptance of packaging

  22. 22.

    Żakowska H (2012) Packaging waste recycling systems-selected legal, organizational and economical problems in Poland. Polimery 9:613–619

    Article  Google Scholar 

  23. 23.

    Avella M, Bonadies E, Martuscelli E, Rimedio R (2001) European current standardization for plastic packaging recoverable through composting and biodegradation. Polym Test 20:517–521

    Article  Google Scholar 

  24. 24.

    Krzan A, Hemjinda S, Miertus S, Corti A, Chiellini E (2006) Standardization and certification in the area of environmentally degradable plastics. Polym Degrad Stab 91:2819–2833

    CAS  Article  Google Scholar 

  25. 25.

    Davis G (2003) Characterizarion and characteristics of degradable polymer sacks. Mat Charact 51:147–157

    CAS  Article  Google Scholar 

  26. 26.

    Degli-Innocenti F, Bellia G, Tosin M, Kapanen A, Itavaara M (2001) Detection of toxicity released by biodegradable plastics after composting in activated vermiculite. Polym Degrad Stab 73:101–106

    CAS  Article  Google Scholar 

  27. 27.

    Witt U, Einig T, Yamamoto M, Kleeberg I, Deckwer WD, Muller RJ (2001) Biodegradation of aliphatic–aromatic copolyesters: evaluation of the final biodegradability and ecotoxicological impact of degradation intermediates. Chemosphere 44:289–299

    CAS  Article  Google Scholar 

  28. 28.

    Rychter P, Biczak R, Herman B, Smyłła A, Kurcok P, Adamus G, Kowalczuk M (2006) Environmental degradation of polyester blends containing atactic poly(3-hydroxybutyrate). Biodegradation in soil and ecotoxicological impact. Biomacromolecules 7:3125–3131

    CAS  Article  Google Scholar 

  29. 29.

    Rychter P, Kawalec M, Sobota M, Kurcok P, Kowalczuk M (2010) Study of aliphatic–aromatic copolyester degradation in sandy soil and its ecotoxicological impact. Biomacromolecules 11:839–847

    CAS  Article  Google Scholar 

  30. 30.

    Rychter P, Biczak R, Herman B, Zawierucha I, Musioł M, Sobota M, Kowalczuk M (2011) Environmental degradation of aromatic–aliphatic polyester blends. Evaluation of degradation products in soil and their phytotoxicological impact. Pol J Environ Stud 20:293–298

    Google Scholar 

  31. 31.

    Żenkiewicz M, Richert A, Malinowski R, Moraczewski K (2013) A comparative analysis of mass losses of some aliphatic polyesters upon enzymatic degradation. Polym Test 32:209–214

    Article  Google Scholar 

  32. 32.

    Sikorska W, Richert J, Rydz J, Musioł M, Adamus G, Janeczek H, Kowalczuk M (2012) Degradability studies of poly(l-lactide) after multi-reprocessing experiments in extruder. Polym Degrad Stab 97:1891–1897

    CAS  Article  Google Scholar 

  33. 33.

    Sikorska W, Dacko P, Sobota M, Rydz J, Musioł M, Kowalczuk M (2008) Degradation study of polymers from renewable resources and their blends in industrial composting pile. Macromol Symp 272:132–135

    CAS  Article  Google Scholar 

  34. 34.

    Adamus G, Dacko P, Musioł M, Sikorska W, Sobota M, Biczak R, Herman B, Rychter P, Krasowska K, Rutkowska M, Kowalczuk M (2006) Degradation studies of selected synthetic polyesters at the natural condition. Polimery 51:539–546

    CAS  Google Scholar 

  35. 35.

    Musioł M, Rydz J, Sikorska W, Rychter P, Kowalczuk M (2011) A preliminary study of the degradation of selected commercial packaging materials in compost and aqueous environments. Pol J Chem Technol 13:55–57

    Google Scholar 

  36. 36.

    Cai H, Dave V, Cross R, McCarthy P (1996) Effects of physical aging, crystallinity, and orientation on the enzymatic degradation of poly(lactic acid). J Polym Sci Part B Polym Phys 34:2701–2708

    Article  Google Scholar 

  37. 37.

    Kobayashi S, Uyama H, Takamoto T (2000) Lipase-catalyzed degradation of polyesters in organic solvents. A new methodology of polymer recycling using enzyme as catalyst. Biomacromolecules 1:3–5

    CAS  Article  Google Scholar 

  38. 38.

    Sikorska W, Musiol M, Nowak B, Pajak J, Labuzek S, Kowalczuk M, Adamus G (2015) Degradability of polylactide and its blend with poly[(R,S)-3-hydroxybutyrate] in industrial composting and compost extract. Int Biodeterior Biodegrad 101:32–41

    CAS  Article  Google Scholar 

  39. 39.

    Silesian air monitoring. Accessed 22 Aug 2012

  40. 40.

    Rydz J, Adamus G, Wolna-Stypka K, Marcinkowski A, Misiurska-Marczak M, Kowalczuk M (2013) Degradation of polylactide in paraffin and selected protic media. Polym Degrad Stab 98:316–324

    CAS  Article  Google Scholar 

  41. 41.

    Andersson SR, Hakkarainen M, Inkinen S, Södergård A, Albertsson A-C (2010) Leads to higher hydrolytic stability but more acidic hydrolysis product pattern. Biomacromolecules 11:1067–1073

    CAS  Article  Google Scholar 

  42. 42.

    Cam D, Suong-Hyu H, Ikada Y (1995) Degradation of high molecular weight poly(l-lactide) in alkaline medium. Biomaterials 16:833–843

    CAS  Article  Google Scholar 

  43. 43.

    Rutkowska M, Krasowska K, Heimowska A, Kowalczuk M (2001) In: Chiellini E, Gil H, Braunegg G, Buchert J, Gatenholm P, van der Zee M (eds) Biorelated polymers: sustainable polymer science and technology. Kluwer Academic/Plenum Publishers, New York

    Google Scholar 

  44. 44.

    Rydz J, Sikorska W, Musioł M, Janeczek H, Sobota M, Zawidlak-Węgrzyńska B, Kwiecień I, Kyulavska M, Koseva N, Christova D (2014) Degradation of PLA-based (nano)composites in different environments. In: Balabanova E, Mileva E (eds.) Nanostructured materials application and innovation transfer, Nanoscience & Nanotechnology, No 14. BPS Ltd, Sofia, Bulgaria, pp 109–111

  45. 45.

    Espartero JL, Rashkov I, Li SM, Manolova N, Vert M (1996) NMR analysis of low molecular weight poly(lactic acid)s. Macromolecules 29:3535–3539

    CAS  Article  Google Scholar 

  46. 46.

    Malinowski R, Żenkiewicz M, Richert S (2011) In: Wrobel G (ed) Polymers and constructional composites. Logos Press, Cieszyn (in Polish)

    Google Scholar 

  47. 47.

    Di Lorenzo ML, Sajkiewicz P, Gradys A, La Pietra P (2009) Optimization of melting conditions for the analysis of crystallization kinetics of poly(3-hydroksybutyrate). e-Polym 27:1–12

    Google Scholar 

  48. 48.

    Wang Y, Mano JF (2005) Influence of melting conditions on the thermal behavior of poly(l-lactic acid). Eur Polym J 41:2335–2342

    CAS  Article  Google Scholar 

  49. 49.

    Montserrat S, Colomer R (1984) The effect of the molecular weight on the glass transition temperature in amorphous poly(ethylene terephthalate). Polym Bull 12:173–180

    CAS  Article  Google Scholar 

  50. 50.

    Rydz J, Wolna-Stypka K, Musioł M, Szeluga U, Janeczek H, Kowalczuk M (2013) Further evidence of polylactide degradation in paraffin and in selected protic media. A thermal analysis of eroded polylactide foils. Polym Degrad Stab 98:1450–1457

    CAS  Article  Google Scholar 

  51. 51.

    Koyama N, Doi Y (1997) Miscibility of binary blends of poly[(R)-3-hydroxybutyric acid] and poly[(S)-lactic acid]. Polymer 38:1589–1593

    CAS  Article  Google Scholar 

Download references


The research was supported by the European Regional Development Fund, MARGEN Project No. POIG.01.03.01-00-018/08, by the European Commission under the Seventh Framework Programme, POLINNOVA Project No. 316086 and by the National Science Centre, NCN OPUS Project No. 2012/07/B/ST5/00627, (“Low pressure catalytic synthesis of novel beta-lactone monomers and their anionic ring-opening (co)polymerisation leading to synthetic analogues of aliphatic biopolyesters”), NCN SONATA Project No. 2012/05/D/ST5/03384. The outcomes of this research were used to implement the PLASTiCE project (3CE368P1, “Innovation value chain development for sustainable plastics in central Europe”, Central Europe Programme, co-financed by ERDF). The authors would like to thank R. Malinowski of the IMPIB in Toruń, Poland, for the preparation of PLA-based rigid films.

Author information



Corresponding author

Correspondence to Marta Musioł.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Compliance with ethics requirements

This article does not contain any studies with human or animal subjects.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Musioł, M., Sikorska, W., Adamus, G. et al. (Bio)degradable polymers as a potential material for food packaging: studies on the (bio)degradation process of PLA/(R,S)-PHB rigid foils under industrial composting conditions. Eur Food Res Technol 242, 815–823 (2016).

Download citation


  • Poly[(R,S)-3-hydroxybutyrate]
  • Polylactide
  • Packages