Skip to main content
Log in

Update on element content profiles in eleven wild edible mushrooms from family Boletaceae

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

The aim of this study was to determine and evaluate the amounts of major elements (Ca, Fe, K, Na and P), essential trace elements (Cu, Zn, Fe and Mn) and some other trace metals (Ag, Al, Co, Ni, Cr, Sr, Se, Bi, Rb) in eleven species of wild-grown common edible mushrooms from family Boletaceae (Boletus appendiculatus, Boletus edulis, Boletus regius, Boletus fechtneri, Boletus impolitus, Boletus purpureus, Boletus rhodoxanthus, Leccinum crocipodium, Leccinum pseudoscaber, Xerocomellus chrysenteron, Xerocomus badius) from Serbia. The measurements of major elements (Ca, Fe, K, Na and P) were carried out by inductively coupled plasma optical emission spectrometer (ICP-OES), while analytical measurements of the rest of studied elements were performed using an inductively coupled plasma mass spectrometer (ICP-MS), after microwave digestion. The results showed that the element concentrations were species-dependent. Potassium and phosphorous concentrations were found to be greater than those of the other mineral constituents in all tested species. Multivariate analysis included principal component analysis (PCA) and hierarchical cluster analyses (HCA). HCA grouped mushrooms in three statistically significant clusters, while PCA indicated connection between analyzed metals. Also, this paper highlights the importance of essential and nonessential elements of human health and their daily intake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Agency for Toxic Substances and Disease Registry (ATSDR), Toxicological profile for Arsenic, 2007

  2. Alonso J, García MA, Pérez-López M, Melgar MJ (2003) The concentrations and bioconcentration factors of copper and zinc in edible mushrooms. Arch Environ Contam Toxicol 44:0180–0188. doi:10.1007/s00244-002-2051-0

    Article  CAS  Google Scholar 

  3. Alvin CR (2002) Methods of multivariate analysis, ch. 12, 2nd edn. Wiley, New York, pp 403–431

  4. Azevedo BF, Furieri LB, Peçanha FM, Wiggers GA, Vassallo PF, Simões MR, Fiorim J, Batista PR, Fioresi M, Rossoni L, Stefanon I, Alonso MJ, Salaices M, Vassallo DV (2012) J Biomed Biotechnol. doi:10.1155/2012/949048

    Google Scholar 

  5. Beretta G, Granata P, Ferrero M, Orioli M, Maffei Facino R (2005) Standardization of antioxidant properties of honey by a combination of spectrophotometric/fluorimetric assays and chemometrics. Anal Chim Acta 533:185–191. doi:10.1016/j.aca.2004.11.010

    Article  CAS  Google Scholar 

  6. Berrueta LA, Alonso-Salces RM, Héberger K (2007) Supervised pattern recognition in food analysis. J Chromatogr A 1158:196–214. doi:10.1016/j.chroma.2007.05.024

    Article  CAS  Google Scholar 

  7. Cocchi L, Vescov L, Petrini LE, Petrini O (2006) Heavy metals inedible mushrooms in Italy. Food Chem 98:277–284

    Article  CAS  Google Scholar 

  8. Commission regulation no. 629/2008, Official Journal of the European Union 2008

  9. Demirbas A (2001) Concentrations of 21 metals in 18 species of mushrooms growing in the East Black Sea region. Food Chem 75:453–457

    Article  CAS  Google Scholar 

  10. Falandysz J, Bona H, Danisiewicz D (1994) Silver content of wildgrown mushrooms from northern Poland. Zeitschrift für Lebensmittel-Untersuchung und–Forschung, 199:222–224

  11. Falandysz J, Borovička J (2013) Macro and trace mineral constituents and radionuclides in mushrooms: health benefits and risks. Appl Microbiol Biotechnol 97:477–501. doi:10.1007/s00253-012-4552-8

    Article  CAS  Google Scholar 

  12. Falandysz J, Frankowska A, Mazur A (2007) Mercury and its bioconcentration factors in King Bolete (Boletus edulis). J Environ Sci Health, Part A 42:2089–2095

    Article  CAS  Google Scholar 

  13. Falandysz J, Kunito T, Kubota R, Bielawski L, Frankowska A, Falandysz JJ, Tanabe S (2008) Multivariate characterization of elements accumulated in King Bolete Boletus edulis mushroom at lowland and high mountain regions. J Environ Sci Health, Part A 43:1692–1699

    Article  CAS  Google Scholar 

  14. Fang Y, Sun X, Yang W, Ma N, Xin Z, Fu J, Liu X, Liu M, Mariga AM, Zhu X, Hu Q (2014) Food Chem 147:147–151. doi:10.1016/j.foodchem.2013.09.116

    Article  CAS  Google Scholar 

  15. Giannaccini G, Betti L, Palego L, Mascia G, Schmid L, Lanza M, Mela A, Fabbrini L, Biondi L, Lucacchini A (2012) The trace element content of top-soil and wild edible mushroom samples collected in Tuscany, Italy. Environ Monit Assess 184:7579–7585. doi:10.1007/s10661-012-2520-5

    Article  CAS  Google Scholar 

  16. Gopalani M, Shahare M, Ramteke DS, Wate SR (2007) Heavy metal content of potato chips and biscuits from Nagpur city, India. Bull Environ Contam Toxicol 79:384–387

    Article  CAS  Google Scholar 

  17. Gucia M, Jarzyńska G, Rafał E, Roszak M, Kojta AK, Osiej I, Falandysz J (2012) Multivariate analysis of mineral constituents of edible Parasol Mushroom (Macrolepiota procera) and soils beneath fruiting bodies collected from Northern Poland. Environ Sci Pollut Res 19:416–431. doi:10.1007/s11356-011-0574-5

    Article  CAS  Google Scholar 

  18. Jarzyńska G, Falandysz J (2012) Metallic elements profile of Hazel (Hard) Bolete (Leccinum griseum) mushroom and associated upper soil horizon. Afr J Biotechnol 11:4588–4594

    Google Scholar 

  19. Kaiser HF (1960) Educ Psychol Measur. doi:10.1177/001316446002000116

    Google Scholar 

  20. Kalač PA (2001) Review of edible mushroom radioactivity. Food Chem 75:29–35

    Article  Google Scholar 

  21. Kalač P (2009) Chemical composition and nutritional value of European species of wild growing mushrooms: a review. Food Chem 113:9–16

    Article  Google Scholar 

  22. Kalač P, Svoboda LA(2000) Review of trace element concentrations in edible mushrooms. Food Chem 62:273–281

    Google Scholar 

  23. Kalac P, Burda J, Staskova I (1991) Concentrations of lead, cadmium, mercury and copper in mushrooms in the vicinity of a lead smelter. Sci Total Environ 105:109–119

    Article  CAS  Google Scholar 

  24. Kojta AK, Jarzyńska G, Falandysz J (2012) Mineral composition and heavy metal accumulation capacity of Bay Bolete (Xerocomus badius) fruiting bodies collected near a former gold and copper mining area. J Geochem Explor 121:76–82. doi:10.1016/j.gexplo.2012.08.004

    Article  CAS  Google Scholar 

  25. Koroleva Y, Vakhranyova O, Okhrimenko M. Accumulation heavy metals by wild mushrooms in West part of Russia (South-Eastern Baltic), http://www.biosurveillance2014.com/doc/articles/25_Koroleva.pdf

  26. Lavola A, Aphalo PJ, Lehto T (2011) Boron and other elements in sporophores of ectomycorrhizal and saprotrophic fungi. Mycorrhiza 21:155–165

    Article  CAS  Google Scholar 

  27. Manzi P, Aguzzi A, Pizzoferrato L (2001) Nutritional value of mushrooms widely consumed in Italy. Food Chem 73:321–325

    Article  CAS  Google Scholar 

  28. Michelot D, Siobud E, Dore JC, Viel C, Poirier F (1998) Update on metal content profiles in mushrooms-toxicological implications and tentative approach to the mechanisms of bioaccumulation. Toxicon 36:1997–2012

    Article  CAS  Google Scholar 

  29. Mirończuk-Chodakowska I, Socha K, Witkowska AM, Zujko ME, Borawska MH (2013) Cadmium and lead in wild edible mushrooms from the Eastern region of Poland’s ‘Green Lungs’. Pol J Environ Stud 22:1759–1765

    Google Scholar 

  30. Mleczek M, Siwulski M, Mikołajczak P, Goliński P, Gąsecka M, Sobieralski K, Dawidowicz L, Szymańczyk M (2015) Bioaccumulation of elements in three selected mushroom species from southwest Poland. J Environ Sci Health Part B 50. doi:10.1080/03601234.2015.982427

  31. Ouzouni PK, Veltsistas PG, Paleologos EK, Riganakos KA (2007) Determination of metal content in wild edible mushroom species from regions of Greece. J Food Compos Anal 20:480–486. doi:10.1016/j.jfca.2007.02.008

    Article  CAS  Google Scholar 

  32. Quinche JP (1997) Phosphorus and heavy metals in some species of fungi. Rev Suisse d’Agriculture 29:151–156

    Google Scholar 

  33. Recommended dietary allowance (10th ed.) National Academic Press, Washington, DC 1989

  34. Turkekul I, Elmastas M, Tuzen M (2004) Determination of iron, copper, manganese, zinc, lead, and cadmium in mushroom samples from Tokat, Turkey. Food Chem 84:389–392. doi:10.1016/S0308-8146(03)00245-0

    Article  CAS  Google Scholar 

  35. Unak P, Lambrecht FY, Biber FZ, Darcan S (2007) Iodine measurements by isotope dilution analysis in drinking water in Western Turkey. J Radioanal Nucl Chem 273:649–651

    Article  Google Scholar 

  36. US Environmental Protection Agency (2005) Toxicological review of zinc and compounds, Washington

  37. World Health Organization, Evaluation of Certain Food Additives and Contaminants (Twenty-sixth Report of the Joint FAO/WHO Expert Committee on Food Additives). 1982, Geneva

  38. World Health Organization (1989) Evaluation of certain food additives and contaminants. Expert Committee on Food Additives

  39. World Health Organization (1993) Evaluation of certain food additives and contaminants. Geneva

  40. World Health Organization (1994) Quality directive of potable water, (2nd ed). Geneva

  41. World Health Organization (1996) Trace elements in human nutrition and health. Geneva

  42. World Health Organization (1984) Guidelines for drinking-water quality. Geneva

  43. Yağız D, Konuk M, Afyon A, Kök ŞM (2008) Minor element and heavy metal content of edible wild mushrooms native to bolu, north-west turkey. Fresenius Environ Bull 17:249–252

    Google Scholar 

  44. Zhu F, Qu L, Fan W, Qiao M, Hao H, Wang X (2011) Assessment of heavy metals in some wild edible mushrooms collected from Yunnan Province, China. Environ Monit Assess 179:191–199. doi:10.1007/s10661-010-1728-5

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research was supported by Ministry of Education, Science and Technological Development of the Republic of Serbia [172051]. Marija Dimitrijevic is grateful to Ministry of Education, Science and Technological Development of the Republic of Serbia for providing scholarships for researchers. The authors wish to acknowledge to Marjan Kustera and Mycological Society of Nis for the sampling and determining mushrooms samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marija V. Dimitrijevic.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dimitrijevic, M.V., Mitic, V.D., Cvetkovic, J.S. et al. Update on element content profiles in eleven wild edible mushrooms from family Boletaceae . Eur Food Res Technol 242, 1–10 (2016). https://doi.org/10.1007/s00217-015-2512-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-015-2512-0

Keywords

Navigation