Skip to main content

Composition of tocochromanols in the kernels recovered from plum pits: the impact of the varieties and species on the potential utility value for industrial application

Abstract

The profile of tocopherol (T) and tocotrienol (T3) homologues in kernels recovered from 28 various plum varieties of hexaploid species Prunus domestica L. and diploid plums Prunus cerasifera Ehrh. and its crossbreeds were studied. One tocotrienol (α-T3) and four tocopherol homologues (α, β, γ and δ) were determined in all studied samples by an RP-HPLC/FLD method. The concentration of tocochromanols varied considerably in kernels of different plum varieties and amounted, respectively: 3.55–11.84 (α-T), 0.01–0.13 (β-T), 30.58–73.63 (γ-T), 0.71–4.04 (δ-T), 0.24–1.47 mg/100 g dw (α-T3). The total content of tocochromanols was recorded in the range 36.86–83.38 mg/100 g dw. The average percentage of individual tocochromanols detected in the plum kernels was as follows: α-T (11.6 %), β-T (0.1 %), γ-T (83.6 %), δ-T (3.5 %) and α-T3 (1.2 %). Concentration of tocopherol homologues and α-T3 in kernels of the diploid plums P. cerasifera and its crossbreeds were on average ~20 % lower, with the exception of δ-T (50 % lower), in comparison with the P. domestica. The principal component analysis allowed to classify the tested samples in two main groups and several outliers.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Abbreviations

DW:

Dry weight basis

RP-HPLC/FLD:

Reverse-phase high-performance liquid chromatograph/fluorescence detector

RP-UPLC-ESI/MSn :

Reverse-phase ultra-performance liquid chromatography–electrospray ionization/mass spectrometry

T:

Tocopherol

T3:

Tocotrienol

References

  1. Kaufmane E, Ikase L, Trajkovski V, Lacis G (2002) Evaluation and characterization of plum genetic resources in Sweden and Latvia. Acta Hortic 577:207–213

    Google Scholar 

  2. Ikase L (1998) Winterhardiness of diploid plums in Latvia. Hortic Veg Grow 17:135–142

    Google Scholar 

  3. FAOSTAT (2014) FAO Statistical database. http://www.fao.org. Accessed 10 Dec 2014

  4. Górnaś P, Rudzińska M, Segliņa D (2014) Lipophilic composition of eleven apple seed oils: a promising source of unconventional oil from industry by-products. Ind Crops Prod 60:86–91

    Article  Google Scholar 

  5. Górnaś P, Siger A, Juhņeviča K, Lācis G, Šnē E, Segliņa D (2014) Cold-pressed Japanese quince (Chaenomeles japonica (Thunb.) Lindl. ex Spach) seed oil as a rich source of α-tocopherol, carotenoids and phenolics: a comparison of the composition and antioxidant activity with nine other plant oils. Eur J Lipid Sci Technol 116:563–570

    Article  Google Scholar 

  6. de Conto LC, Gragnani MAL, Maus D, Ambiel HCI, Chiu MC, Grimaldi R, Gonçalves LAG (2011) Characterization of crude watermelon seed oil by two different extractions methods. J Am Oil Chem Soc 88:1709–1714

    CAS  Article  Google Scholar 

  7. Petkova Z, Antova G (2015) Proximate composition of seeds and seed oils from melon (Cucumis melo L.) cultivated in Bulgaria. Cogent Food Agric 1:1–15

    Google Scholar 

  8. Pardo JE, Fernández E, Rubio M, Alvarruiz A, Alonso GL (2009) Characterization of grape seed oil from different grape varieties (Vitis vinifera). Eur J Lipid Sci Technol 111:188–193

    CAS  Article  Google Scholar 

  9. Górnaś P (2015) Unique variability of tocopherol composition in various seed oils recovered from by-products of apple industry: rapid and simple determination of all four homologues (α, β, γ and δ) by RP-HPLC/FLD. Food Chem 172:129–134

    Article  Google Scholar 

  10. Górnaś P, Siger A, Segliņa D (2013) Physicochemical characteristics of the cold-pressed Japanese quince seed oil: new promising unconventional bio-oil from by-products for the pharmaceutical and cosmetic industry. Ind Crops Prod 48:178–182

    Article  Google Scholar 

  11. Górnaś P, Soliven A, Segliņa D (2014) Tocopherols and tocotrienols profile in seed oils recovered from industrial fruit by-products: rapid separation of α/β/γ/δ homologues by RP-HPLC/FLD method. Eur J Lipid Sci Technol. doi:10.1002/ejlt.201400566

    Google Scholar 

  12. Bolarinwa IF, Orfila C, Morgan MRA (2014) Amygdalin content of seeds, kernels and food products commercially-available in the UK. Food Chem 152:133–139

    CAS  Article  Google Scholar 

  13. Górnaś P, Mišina I, Olšteine A, Krasnova I, Pugajeva I, Lācis G, Siger A, Michalak M, Soliven A, Segliņa D (2015) Phenolic compounds in different fruit parts of crab apple: dihydrochalcones as promising quality markers of industrial apple pomace by-products. Ind Crops Prod. doi:10.1016/j.indcrop.2015.1005.1030

    Google Scholar 

  14. Makarova E, Górnaś P, Konrade I, Tirzite D, Cirule H, Gulbe A, Pugajeva I, Seglina D, Dambrova M (2015) Acute anti-hyperglycemic effects of an unripe apple preparation containing phlorizin in healthy volunteers: a preliminary study. J Sci Food Agric 95:560–568

    CAS  Article  Google Scholar 

  15. DellaPenna D (2005) A decade of progress in understanding vitamin E synthesis in plants. J Plant Physiol 162:729–737

    CAS  Article  Google Scholar 

  16. Aggarwal BB, Sundaram C, Prasad S, Kannappan R (2010) Tocotrienols, the vitamin E of the 21st century: its potential against cancer and other chronic diseases. Biochem Pharmacol 80:1613–1631

    CAS  Article  Google Scholar 

  17. Wright ME, Weinstein SJ, Lawson KA, Albanes D, Subar AF, Dixon LB, Mouw T, Schatzkin A, Leitzmann MF (2007) Supplemental and dietary vitamin E intakes and risk of prostate cancer in a large prospective study. Cancer Epidemiol Biomarkers Prev 16:1128–1135

    CAS  Article  Google Scholar 

  18. Dwiecki K, Górnaś P, Jackowiak H, Nogala-Kałucka M, Polewski K (2007) The effect of D-alpha-tocopherol on the solubilization of dipalmitoylphosphatidylcholine membrane by anionic detergent sodium dodecyl sulfate. J Food Lipids 14:50–61

    CAS  Article  Google Scholar 

  19. Dwiecki K, Górnaś P, Wilk A, Nogala-Kałucka M, Polewski K (2007) Spectroscopic studies of D-α-tocopherol concentration-induced transformation in egg phosphatidylcholne vesicles. Cell Mol Biol Lett 12:51–69

    CAS  Article  Google Scholar 

  20. Nogala-Kałucka M, Dwiecki K, Siger A, Górnaś P, Polewski K, Ciosek S (2013) Antioxidant synergism and antagonism between tocotrienols, quercetin and rutin in model system. Acta Aliment 42:360–370

    Article  Google Scholar 

  21. Hassanein MMM (1999) Studies on non-traditional oils: l. Detailed studies on different lipid profiles of some Rosaceae kernel oils. Grasas Aceites 50:379–384

    CAS  Article  Google Scholar 

  22. Matthaeus B, Özcan MM (2009) Fatty acids and tocopherol contents of some Prunus spp. Kernel oils. J Food Lipids 16:187–199

    CAS  Article  Google Scholar 

  23. Picuric-Jovanovic K, Vrbaski Z, Milovanovic M (1997) Aqueous-enzymatic extraction of plum kernel oil. Lipid/Fett 99:433–435

    CAS  Article  Google Scholar 

  24. Górnaś P, Pugajeva I, Segliņa D (2014) Seeds recovered from by-products of selected fruit processing as a rich source of tocochromanols: RP-HPLC/FLD and RP-UPLC-ESI/MSn study. Eur Food Res Technol 239:519–524

    Article  Google Scholar 

  25. Górnaś P, Siger A, Czubinski J, Dwiecki K, Segliņa D, Nogala-Kalucka M (2014) An alternative RP-HPLC method for the separation and determination of tocopherol and tocotrienol homologues as butter authenticity markers: a comparative study between two European countries. Eur J Lipid Sci Technol 116:895–903

    Google Scholar 

  26. Górnaś P, Siger A, Polewski K, Pugajeva I, Waśkiewicz A (2014) Factors affecting tocopherol contents in coffee brews: NP-HPLC/FLD, RP-UPLC-ESI/MSn and spectroscopic study. Eur Food Res Technol 238:259–264

    Article  Google Scholar 

  27. Górnaś P, Segliņa D, Lācis G, Pugajeva I (2014) Dessert and crab apple seeds as a promising and rich source of all four homologues of tocopherol (α, β, γ and δ). LWT - Food Sci Technol 59:211–214

    Article  Google Scholar 

  28. Górnaś P, Mišina I, Grāvīte I, Soliven A, Kaufmane E, Segliņa D (2015) Tocochromanols composition in kernels recovered from different apricot varieties: RP-HPLC/FLD and RP-UPLC-ESI/MSn study. Nat Prod Res. doi:10.1080/14786419.14782014.14997727

    Google Scholar 

  29. Górnaś P, Mišina I, Lāce B, Lācis G, Segliņa D (2015) Tocochromanols composition in seeds recovered from different pear cultivars: RP-HPLC/FLD and RP-UPLC-ESI/MSn study. LWT - Food Sci Technol 62:104–107

    Article  Google Scholar 

  30. Górnaś P, Mišina I, Ruisa S, Rubauskis E, Lācis G, Segliņa D (2015) Composition of tocochromanols in kernels recovered from different sweet cherry (Prunus avium L.) cultivars: RP-HPLC/FLD and RP-UPLC-ESI/MSn study. Eur Food Res Technol 240:663–667

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the ESF Project Number 2013/0048/1DP/1.1.1.2.0/13/APIA/VIAA/008 “Creation of a researcher group to investigate the possibilities of stone fruit trees propagation, quality improvement of generative processes and fruit usage.”

Conflict of interest

None.

Compliance with Ethics Requirements

This article does not contain any studies with human or animal subjects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paweł Górnaś.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Górnaś, P., Mišina, I., Grāvīte, I. et al. Composition of tocochromanols in the kernels recovered from plum pits: the impact of the varieties and species on the potential utility value for industrial application. Eur Food Res Technol 241, 513–520 (2015). https://doi.org/10.1007/s00217-015-2480-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-015-2480-4

Keywords

  • Plum kernels
  • By-products
  • Prunus
  • Tocopherols
  • Tocotrienols
  • Vitamin E