Skip to main content
Log in

Common wheat (Triticum aestivum L.): evaluating microstructural changes during the malting process by using confocal laser scanning microscopy and scanning electron microscopy

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM) were used to investigate the microstructural changes in wheat (Triticum aestivum L.) during the malting process. With the help of these powerful optical tools, the organization of starch, proteins and cell walls of cereals could be investigated separately in projections and the microstructure was visualized with an imaging software. Both microscopes were necessary for the investigation and the evaluation of microstructural changes, because SEM and CLSM have different merits and optical benefits. CLSM achieves an overview of single compounds of the grain, which can be used to quantify them. On the other hand, SEM has a higher magnification, where a deeper insight in the kernel structure could be obtained. In particular, the surface of starch kernels can be visualized, when they get degraded by enzymes. Furthermore, a detailed starch structure can be monitored by using SEM. Various grain regions, such as aleurone layer, starchy endosperm and germ, were visualized with the CLSM, and differences in the single fractions were clearly visible. Starch in unmalted cereals revealed that it is embedded in a compact protein network, which consists of protein bodies and is degraded during the malting process. Also the cell walls, mainly consisting of β-glucan, are clearly visible in the unmalted stage and get more and more degraded during the malting process. Hence the differences in the overall structure of unmalted to malted grains were investigated by CLSM and SEM and verified using established malt analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CLSM:

Confocal laser scanning microscopy

SEM:

Scanning electron microscopy

FAN:

Free amino nitrogen

SN:

Soluble nitrogen

TN:

Total nitrogen

References

  1. Zarnkow M, Mauch A, Back W, Arendt EK, Kreisz S (2007) Proso millet (Panicum miliaceum L.): an evaluation of the microstructural changes in the endosperm during the malting process by using scanning-electron and confocal laser microscopy. J Inst Brew 113(4):355–364 PubMed PMID: ISI:000253460600002. English

    Article  CAS  Google Scholar 

  2. Renzetti S, Courtin CM, Delcour JA, Arendt EK (2010) Oxidative and proteolytic enzyme preparations as promising improvers for oat bread formulations: rheological, biochemical and microstructural background. Food Chem 119(4):1465–1473

    Article  CAS  Google Scholar 

  3. Renzetti S, Dal Bello F, Arendt EK (2008) Microstructure, fundamental rheology and baking characteristics of batters and breads from different gluten-free flours treated with a microbial transglutaminase. J Cereal Sci 48(1):33–45

    Article  CAS  Google Scholar 

  4. Jekle M, Becker T (2011) Dough microstructure: novel analysis by quantification using confocal laser scanning microscopy. Food Res Int 44(4):984–991

    Article  Google Scholar 

  5. Oliveira PM, Mauch A, Jacob F, Waters DM, Arendt EK (2012) Fundamental study on the influence of Fusarium infection on quality and ultrastructure of barley malt. Int J Food Microbiol 156(1):32–43

    Article  CAS  Google Scholar 

  6. Hager A-S, Czerny M, Bez J, Zannini E, Arendt EK (2013) Starch properties, in vitro digestibility and sensory evaluation of fresh egg pasta produced from oat, teff and wheat flour. J Cereal Sci 58(1):156–163

    Article  CAS  Google Scholar 

  7. Schirmer M, Höchstötter A, Jekle M, Arendt E, Becker T (2013) Physicochemical and morphological characterization of different starches with variable amylose/amylopectin ratio. Food Hydrocoll 32(1):52–63

    Article  CAS  Google Scholar 

  8. Pawley JB (2006) Fundamental limits in confocal microscopy. Handbook of biological confocal microscopy. Springer, Berlin, pp 20–42

    Chapter  Google Scholar 

  9. Back W (2005) Ausgewählte Kapitel der Brautechnologie. Hans Carl GmbH, Nürnberg

    Google Scholar 

  10. Kunze W (2004) Malt products. Technology brewing and malting. VLB Berlin, Berlin, pp 88–170

    Google Scholar 

  11. Narziss L, Back W (2012) Band 1. Die Technologie der Malzbereitung, 8. neu bearbeitete Auflage. Die Bierbrauerei: In drei Bänden, Ferdinand Enke Verlag, Stuttgart

  12. Briggs DE (1998) The biochemistry of malting. Malts and malting. Blackie Academics and Professional, an imprint of Chapman and Hall, London, pp 133–2128

    Google Scholar 

  13. Delcour JA, Hoseney RC (2010) Principles of cereal science and technology. AACC, St. Paul

    Book  Google Scholar 

  14. Esslinger H, Narziß L (2005) Beer. Wiley-VCH, Weinheim

    Google Scholar 

  15. Narziß L, Back W (2012) Die Bierbrauerei: Band 2: Technologie der Würzebereitung, 8th edn. Wiley-VHC, Weinheim

    Google Scholar 

  16. Narziss L, Back W (2009) Die Technologie der Malzbereitung. Ferdinand Enke Verlag, Stuttgart

    Google Scholar 

  17. Wijngaard H, Renzetti S, Arendt E (2007) Microstructure of buckwheat and barley during malting observed by confocal scanning laser microscopy and scanning electron microscopy. J Inst Brew 113(1):34–41

    Article  CAS  Google Scholar 

  18. Baier-Schenk A, Handschin S, Von Schönau M, Bittermann A, Bächi T, Conde-Petit B (2005) In situ observation of the freezing process in wheat dough by confocal laser scanning microscopy (CLSM): formation of ice and changes in the gluten network. J Cereal Sci 42(2):255–260

    Article  CAS  Google Scholar 

  19. Peighambardoust S, Van der Goot A, Van Vliet T, Hamer R, Boom R (2006) Microstructure formation and rheological behaviour of dough under simple shear flow. J Cereal Sci 43(2):183–197

    Article  CAS  Google Scholar 

  20. van de Velde F, Weinbreck F, Edelman MW, van der Linden E, Tromp RH (2003) Visualisation of biopolymer mixtures using confocal scanning laser microscopy (CSLM) and covalent labelling techniques. Colloids Surf B 31(1):159–168

    Article  Google Scholar 

  21. Primo-Martin C, Van de Pijpekamp A, Van Vliet T, De Jongh H, Plijter J, Hamer R (2006) The role of the gluten network in the crispness of bread crust. J Cereal Sci 43(3):342–352

    Article  CAS  Google Scholar 

  22. Irving D, Peake J, Breda V (1991) Nutrient distribution in five perennial grain species exhibited by light and scanning electron microscopy. Cereal Chem 68(4):376–382

    Google Scholar 

  23. Dürrenberger MB, Handschin S, Conde-Petit B, Escher F (2001) Visualization of food structure by confocal laser scanning microscopy (CLSM). LWT-Food Sci Technol 34(1):11–17

    Article  Google Scholar 

  24. van de Velde F, van Riel J, Tromp RH (2002) Visualisation of starch granule morphologies using confocal scanning laser microscopy (CSLM). J Sci Food Agric 82(13):1528–1536

    Article  Google Scholar 

  25. Angeles G, Owens SA, Ewers FW (2004) Fluorescence shell: a novel view of sclereid morphology with the confocal laser scanning microscope. Microsc Res Tech 63(5):282–288

    Article  Google Scholar 

  26. Vinitha G, Ramalingam A (2008) Nonlinear studies of Acid Fuchsin dye in liquid and solid media. Spectrochim Acta Part A Mol Biomol Spectrosc 69(4):1160–1164

    Article  CAS  Google Scholar 

  27. Holopainen UR, Wilhelmson A, Salmenkallio-Marttila M, Peltonen-Sainio P, Rajala A, Reinikainen P et al (2005) Endosperm structure affects the malting quality of barley (Hordeum vulgare L.). J Agric Food Chem 53(18):7279–7287

    Article  CAS  Google Scholar 

  28. Hager A-S, Czerny M, Bez J, Zannini E, Arendt EK (2013) Starch properties, in vitro digestibility and sensory evaluation of fresh egg pasta produced from oat, teff and wheat flour. J Cereal Sci 58(1):156–163

    Article  CAS  Google Scholar 

  29. Shaik SS, Carciofi M, Martens HJ, Hebelstrup KH, Blennow A (2014) Starch bioengineering affects cereal grain germination and seedling establishment. J Exp Bot eru107

  30. Anger H-M (2006) Brautechnische Analysenmethoden-Rohstoffe. Selbstverlag der Mitteleuropäische Brautechnische Analysenkommission, Freising

    Google Scholar 

  31. Metayer JP, Grosjean F, Castaing J (1993) Study of variability in French cereals. Anim Feed Sci Technol 43(1–2):87–108

    Article  Google Scholar 

  32. Sacher B (1997) Über den Einfluss von Sorte, Umwelt, agronomischen Maßnahmen und Mälzungstechnologie auf die wertbestimmenden Eigenschaften von Winterweizenmalzen. Technische Universität München, Weihenstephan, Freising

    Google Scholar 

  33. Wlcek S, Zollitsch W (2002) Rohprotein- und Aminosäurengehalte von Winterweizen und Triticale aus biologischen Anbau. Wien: Universität für Bodenkultur Wien Institut für Nutztierwissenschaften, 2002 Contract No.: Project Number: 1113

  34. Pomeranz Y (1988) Wheat: Chemistry and Technology. AACC, St. Paul

    Google Scholar 

  35. Hoseney RC (1994) Principles of cereal science and technology. American Assosiation of Cereal Chemists, Inc, St. Paul

    Google Scholar 

  36. Cui W, Wood PJ, Blackwell B, Nikiforuk J (2000) Physicochemical properties and structural characterization by two-dimensional NMR spectroscopy of wheat beta-d-glucan—comparison with other cereal beta-d-glucans. Carbohydr Polym 41(3):249–258 PubMed PMID: ISI:000084164800004. English

    Article  CAS  Google Scholar 

  37. Havrlentova M, Kraic J (2006) Content of beta-d-glucan in cereal grains. J Food Nutr Res 45(3):97–103 PubMed PMID: ISI:000244653400001. English

    CAS  Google Scholar 

  38. Li W, Cui SW, Kakuda Y (2006) Extraction, fractionation, structural and physical characterization of wheat beta-d-glucans. Carbohydr Polym 63(3):408–416 PubMed PMID: ISI:000236166200016. English

    Article  CAS  Google Scholar 

  39. Wood PJ, Weisz J (1984) Use of calcofluor in analysis of oat beta-d-glucan. Cereal Chem 61(1):73–75 PubMed PMID: ISI:A1984SA07100016. English

    CAS  Google Scholar 

  40. Izydorczyk MS, Biliaderis CG (2000) Structural and functional aspects of cereal arabinoxylans and b-glucans. In: Doxastakis G, Kiosseoglou V (eds) Novel macromolecules in food systems. Elsevier Science B.V, Amsterdam, pp 361–384

    Chapter  Google Scholar 

  41. Bradbury D, Cull I, MacMaster M (1956) Structure of the mature wheat kernel, III. Microscopic structure of the endosperm of hard red winter wheat. Cereal Chem 33(329–42):61–91

    Google Scholar 

  42. Larkin RA, MacMaster MM, Rist C (1952) Relation of endosperm wall thickness to the milling quality of seven Pacific Northwest wheats. Cereal Chem 29:407–413

    Google Scholar 

  43. Evers A (1970) Development of the endosperm of wheat. Ann Bot 34:547–555

    Google Scholar 

  44. Chiotelli E, Le Meste M (2002) Effect of small and large wheat starch granules on thermomechanical behavior of starch. Cereal Chem 79(2):286–293

    Article  CAS  Google Scholar 

  45. Kulp K (1973) Characteristics of small-granule starch of flour and wheat. Minnesota, USA, AACC St Paul, pp 666–679

    Google Scholar 

  46. Vasanthan T, Bhatty RS (1996) Physicochemical properties of small- and large-granule starches of waxy, regular, and high-amylose barleys. Cereal Chem 73(2):199–207

    CAS  Google Scholar 

  47. Dominguez F, Cejudo FJ (1995) Pattern of endoproteolysis following wheat grain germination. Physiol Plant 95(2):253–259

    Article  CAS  Google Scholar 

  48. Singh J, Skerritt JH (2001) Chromosomal control of albumins and globulins in wheat grain assessed using different fractionation procedures. J Cereal Sci 33:163–181

    Article  CAS  Google Scholar 

  49. Weiss W, Huber G, Engel K-H, Pethran A, Dunn MJ, Gooley AA et al (1997) Identification and characterization of wheat grain albumin/globulin allergens. Electrophoresis 18(5):826–833

    Article  CAS  Google Scholar 

  50. Bean SR, Hilhorst R, Gruppen H, Traore AS, Laane C, van Berkel WJH et al (2002) Separation of water-soluble proteins from cereals by high-performance capillary electrophoresis (HPCE). Cereal Chem 80(5):505–510

    Article  Google Scholar 

  51. Gupta RB, Shepherd KW, MacRitchie F (1991) Genetic control and biochemical properties of some high molecular weight albumins in bread wheat. J Cereal Sci 13:221–235

    Article  CAS  Google Scholar 

  52. Shewry PR, Tatham AS, Fido R, Jones H, Bercelo P, Lazzeri PA eds (2000) Improving the end use properties of wheat by manipulating the grain protein composition. In: Wheat in Global Environment 6th International Wheat Conference, Budapest, Hungary

  53. MacRitchie F (1994) Role of polymeric proteins in flour functionality. In: Wheat kernel proteins: molecular and functional aspects. Proceedings of international symposium, Viterbo, Italy, 28–30 September 1994, pp 145–150

  54. Faltermaier A, Waters D, Becker T, Arendt EK, Gastl M (2013) Protein modifications and metabolic changes taking place during the malting of common wheat (Triticum aestivum L.). JASBC 71(3):153–160

    CAS  Google Scholar 

  55. Preston KR, Kruger JE (1979) Physiological control of exo- and endoproteolytic activities in germinating wheat and their relationship to storage protein hydrolysis. Plant Physiol 64(3):450–454

    Article  CAS  Google Scholar 

  56. Shutov AD, Vaintraub IA (1987) Degradation of storage proteins in germinating seeds. Phytochemistry 26(6):1557–1566

    Article  CAS  Google Scholar 

  57. Sadosky P, Schwarz PB, Horsley RD (2002) Effect of arabinoxylans, beta-glucans, and dextrins on the viscosity and membrane filterability of a beer model solution. J Am Soc Brew Chem 60(4):153–162 PubMed PMID: ISI:000179785400002. English

    CAS  Google Scholar 

  58. Belitz HD, Grosch W, Schieberle P (2008) Lehrbuch der lebensmittelchemie. Springer, Heidelberg

    Google Scholar 

  59. Ducroo P, Frelon PG (1989) Improvement of beer production by the use of β-glucanase-pentosanase from Disporotrichum dimorphosporum. In: Ducroo P, Frelon PG (eds) European brewery convention. Oxford University Press, Inc., New York

    Google Scholar 

  60. Mares DJ, Stone BA (1973) Studies on wheat endosperm. 1. Chemical compositions and ultrastructure of cell-walls. Aust J Biol Sci 26(4):793–812 PubMed PMID: ISI:A1973Q356100009. English

    CAS  Google Scholar 

  61. Delcour JA, Van Win H, Grobet PJ (1999) Distribution and structural variation of arabinoxylans in common wheat mill streams. J Agric Food Chem 47(1):271–275 PubMed PMID: ISI:000078136200046. English

    Article  CAS  Google Scholar 

  62. Grant MM, Briggs DE (2002) The histochemical location of arabinosidase and xylosidase in germinating wheat grains. J Inst Brew 108(4):478–480 PubMed PMID: ISI:000181613100013. English

    Article  CAS  Google Scholar 

  63. De Backer E, Gebruers K, Van den Ende W, Courtin CM, Delcour JA (2010) Post-translational processing of β-d-xylanases and changes in extractability of arabinoxylans during wheat germination. Plant Physiol Biochem 48(2):90–97

    Article  Google Scholar 

  64. Hübner F, Arendt EK (2010) Studies on the influence of germination conditions on protein breakdown in buckwheat and oats. J Inst Brew 116(1):3–13

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the funding body InBev-Baillet-Latour who sponsored this research. We also want to thank Dr. Jacob who carried out the amino acid analyses and Andreas Maier for doing the malting. Also special thanks to Monika Brasch and Christoph Haimerl for supporting the malt analyses.

Conflict of Interest

Andrea Faltermaier has received research grants from InBev Baillet Latour. Martin Zarnkow, Thomas Becker Elke Arendt and Martina Gastl declare that they have no conflict of interest.

Compliance with Ethics Requirements

The authors; Andrea E Faltermaier, Thomas Becker, Martina Gastl, Elke K. Arendt and Martin Zarnkow hereby confirm that this manuscript is performed according and follows the COPE guidelines and has not already been published nor is it under consideration for publication elsewhere. This article does not contain any studies with human or animal subjects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elke K. Arendt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faltermaier, A., Zarnkow, M., Becker, T. et al. Common wheat (Triticum aestivum L.): evaluating microstructural changes during the malting process by using confocal laser scanning microscopy and scanning electron microscopy. Eur Food Res Technol 241, 239–252 (2015). https://doi.org/10.1007/s00217-015-2450-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-015-2450-x

Keywords

Navigation