Skip to main content

Advertisement

Log in

Screening of antimicrobial compounds against Salmonellaty phimurium from burdock (Arctium lappa) leaf based on metabolomics

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

The aim of this study was to investigate the antimicrobial activity of burdock leaf and screen the antimicrobial compounds from burdock leaf based on metabolomics. The crystal violet assay indicated that 34 % ethanol elution fraction of burdock leaf could completely inhibit biofilm formation of Salmonellaty phimurium at a concentration of 1 mg/ml. Then, the chemical composition of burdock leaf fraction was analyzed by UPLC–MS, and 10 active compounds (chlorogenic acid, caffeic acid, p-coumaric acid, quercetin, ursolic acid, rutin, luteolin, crocin, benzoic acid, tenacissoside I) were identified. Lastly, UPLC–MS analysis was applied to obtain the metabolic fingerprints of burdock leaf fractions before and after inhibiting the biofilm of S. phimurium. The metabolic fingerprints were transformed into data with the software MarkerLynx and analyzed with principle component analysis and partial least squares discriminant analysis. Then, 43 variables were screened as potential anti-biofilm ingredients. Among them, chlorogenic acid and quercetin were confirmed as potential anti-biofilm compounds in burdock leaf. It provided data basic for the study of anti-biofilm compounds in burdock leaves, as well as provided a new and convenient method for fast screening of anti-biofilm ingredients from natural plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bremer PJ, Fillery S, McQuillan AJ (2006) Laboratory scale clean-in-place (CIP) studies on the effectiveness of different caustic and acid wash steps on the removal of dairy biofilms. Int J Food Microbiol 106(3):254–262

    Article  CAS  Google Scholar 

  2. Alviano WS et al (2005) Antimicrobial activity of Croton cajucara Benth linalool-rich essential oil on artificial biofilms and planktonic microorganisms. Oral Microbiol Immunol 20(2):101–105

    Article  CAS  Google Scholar 

  3. Flemming H-C, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8(9):623–633

    CAS  Google Scholar 

  4. Stewart PS, Franklin MJ (2008) Physiological heterogeneity in biofilms. Nat Rev Microbiol 6(3):199–210

    Article  CAS  Google Scholar 

  5. Bai AJ, Rai VR (2011) Bacterial quorum sensing and food industry. Compr Rev Food Sci Food Saf 10(3):183–193

    Article  Google Scholar 

  6. Lou Z et al (2013) Anti-biofilm activities and chemical composition of essential oil from burdock leaf. Food Sci Technol Res 19(5):915–921

    Article  CAS  Google Scholar 

  7. Simões M, Simões LC, Vieira MJ (2010) A review of current and emergent biofilm control strategies. LWT—Food Sci Technol 43(4):573–583

    Google Scholar 

  8. Chicurel M (2000) Slimebusters. Nature 408(6810):284–286

    Article  CAS  Google Scholar 

  9. Harmsen M et al (2010) An update on Pseudomonas aeruginosa biofilm formation, tolerance, and dispersal. FEMS Immunol Med Microbiol 59(3):253–268

    CAS  Google Scholar 

  10. Simoes M et al (2006) Control of flow-generated biofilms with surfactants—evidence of resistance and recovery. Food Bioprod Process 84(C4):338–345

    Article  CAS  Google Scholar 

  11. Al-Ahmad A et al (2008) Effects of commonly used food preservatives on biofilm formation of Streptococcus mutans in vitro. Arch Oral Biol 53(8):765–772

    Article  CAS  Google Scholar 

  12. Figueiredo NL et al (2010) The inhibitory effect of Plectranthus barbatus and Plectranthus ecklonii leaves on the viability, glucosyltransferase activity and biofilm formation of Streptococcus sobrinus and Streptococcus mutans. Food Chem 119(2):664–668

    Article  CAS  Google Scholar 

  13. Honraet K, Nelis HJ (2006) Use of the modified robbins device and fluorescent staining to screen plant extracts for the inhibition of S. mutans biofilm formation. J Microbiol Methods 64(2):217–224

    Article  CAS  Google Scholar 

  14. Furiga A, Lonvaud-Funel A, Badet C (2009) In vitro study of antioxidant capacity and antibacterial activity on oral anaerobes of a grape seed extract. Food Chem 113(4):1037–1040

    Article  CAS  Google Scholar 

  15. Fancy SA et al (2006) Gas chromatography/flame ionisation detection mass spectrometry for the detection of endogenous urine metabolites for metabonomic studies and its use as a complementary tool to nuclear magnetic resonance spectroscopy. Rapid Commun Mass Spectrom 20(15):2271–2280

    Article  CAS  Google Scholar 

  16. Ishihara K et al (2009) Identification of urinary biomarkers useful for distinguishing a difference in mechanism of toxicity in rat model of cholestasis. Basic Clin Pharmacol Toxicol 105(3):156–166

    Article  CAS  Google Scholar 

  17. Lao YM, Jiang JG, Yan L (2009) Application of metabonomic analytical techniques in the modernization and toxicology research of traditional Chinese medicine. Br J Pharmacol 157(7):1128–1141

    Article  CAS  Google Scholar 

  18. Li F et al (2007) A pharmaco-metabonomic study on the therapeutic basis and metabolic effects of Epimedium brevicornum Maxim. on hydrocortisone-induced rat using UPLC–MS. Biomed Chromatogr 21(4):397–405

    Article  CAS  Google Scholar 

  19. Theodoridis G, Gika HG, Wilson ID (2011) Mass spectrometry-based holistic analytical approaches for metabolite profiling in systems biology studies. Mass Spectrom Rev 30(5):884–906

    CAS  Google Scholar 

  20. Wang X et al (2011) Potential role of metabolomics apporoaches in the area of traditional Chinese medicine: as pillars of the bridge between Chinese and Western medicine. J Pharm Biomed Anal 55(5):859–868

    Article  CAS  Google Scholar 

  21. Wen B, Lyubimov AV (2011) Metabonomics in understanding drug metabolism and toxicology, in encyclopedia of drug metabolism and interactions. Wiley, New York

    Google Scholar 

  22. Michopoulos F et al (2009) UPLC–MS-based analysis of human plasma for metabonomics using solvent precipitation or solid phase extraction. J Proteome Res 8(4):2114–2121

    Article  CAS  Google Scholar 

  23. Schito AM et al (2011) Effects of demethylfruticuline A and fruticuline A from Salvia corrugata Vahl. on biofilm production in vitro by multiresistant strains of Staphylococcus aureus, Staphylococcus epidermidis and Enterococcus faecalis. Int J Antimicrob Agents 37(2):129–134

    Article  CAS  Google Scholar 

  24. Chang Y, Gu W, McLandsborough L (2012) Low concentration of ethylenediaminetetraacetic acid (EDTA) affects biofilm formation of Listeria monocytogenes by inhibiting its initial adherence. Food Microbiol 29(1):10–17

    Article  CAS  Google Scholar 

  25. Quave CL et al (2008) Effects of extracts from Italian medicinal plants on planktonic growth, biofilm formation and adherence of methicillin-resistant Staphylococcus aureus. J Ethnopharmacol 118(3):418–428

    Article  CAS  Google Scholar 

  26. Wang H et al (2014) Metabonomic analysis of quercetin against the toxicity of chronic exposure to low-level dichlorvos in rats via ultra-performance liquid chromatography-mass spectrometry. Toxicol Lett 225(2):230–239

    Article  CAS  Google Scholar 

  27. Farag MA et al (2014) Metabolomics driven analysis of six Nigella species seeds via UPLC–qTOF–MS and GC–MS coupled to chemometrics. Food Chem 151:333–342

    Article  CAS  Google Scholar 

  28. Saccenti E et al (2014) Reflections on univariate and multivariate analysis of metabolomics data. Metabolomics 10(3):361–374

    Article  CAS  Google Scholar 

  29. Westerhuis J et al (2008) Assessment of PLS-DA cross validation. Metabolomics 4(1):81–89

    Article  CAS  Google Scholar 

  30. Wiklund S et al (2007) Visualization of GC/TOF–MS-Based metabolomics data for identification of biochemically interesting compounds using OPLS class models. Anal Chem 80(1):115–122

    Article  Google Scholar 

  31. Yao L et al (2004) HPLC analyses of flavanols and phenolic acids in the fresh young shoots of tea (Camellia sinensis) grown in Australia. Food Chem 84(2):253–263

    Article  CAS  Google Scholar 

  32. Tarnawski M et al (2006) HPLC determination of phenolic acids and antioxidant activity in concentrated peat extract—a natural immunomodulator. J Pharm Biomed Anal 41(1):182–188

    Article  CAS  Google Scholar 

  33. Rizzo M et al (2006) HPLC determination of phenolics adsorbed on yeasts. J Pharm Biomed Anal 42(1):46–55

    Article  CAS  Google Scholar 

  34. Arimboor R, Kumar KS, Arumughan C (2008) Simultaneous estimation of phenolic acids in sea buckthorn (Hippophae rhamnoides) using RP–HPLC with DAD. J Pharm Biomed Anal 47(1):31–38

    Article  CAS  Google Scholar 

  35. Kelebek H et al (2009) HPLC determination of organic acids, sugars, phenolic compositions and antioxidant capacity of orange juice and orange wine made from a Turkish cv. Kozan. Microchem J 91(2):187–192

    Article  CAS  Google Scholar 

  36. Fang X-K, Gao J, Zhu D-N (2008) Kaempferol and quercetin isolated from Euonymus alatus improve glucose uptake of 3T3-L1 cells without adipogenesis activity. Life Sci 82(11–12):615–622

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors gratefully acknowledge the financial support provided by Project 31201433 of the National Natural Science Foundation of PR China, the Project BK2012555 of Jiangsu Provincial Natural Science Foundation and the project of SKlDB2012-00.

Conflict of interest

None.

Compliance with Ethics Requirements

This article does not containany studies with human or animal subjects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongxin Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, Y., Lou, Z., Yang, L. et al. Screening of antimicrobial compounds against Salmonellaty phimurium from burdock (Arctium lappa) leaf based on metabolomics. Eur Food Res Technol 240, 1203–1209 (2015). https://doi.org/10.1007/s00217-015-2423-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-015-2423-0

Keywords

Navigation