Skip to main content
Log in

Lactobacillus paracasei isolated from grape sourdough: acid, bile, salt, and heat tolerance after spray drying with skim milk and cheese whey

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Lactic acid bacteria have been isolated from sourdough and could present important properties in food manufacturing as starter cultures and also as probiotics. This study evaluated the resistance of Lactobacillus paracasei strain isolated from sourdough to spray drying in the presence of reconstituted skim milk (RSM) and cheese whey (CW). The in vitro tolerance to acid, bile, sodium chloride (NaCl) and heat was studied to free and microencapsulated cells. The microcapsules moisture was determined, and the morphology was observed by scanning electron microscopy. The viability of free and microencapsulated cells decreased by 4.25 log CFU mL−1 and 1.00 log CFU g−1, respectively, when exposed to pH 2.0 for 3 h. At pH 3.0, free cells decreased 0.3 log CFU mL−1, while the microencapsulated form maintained its viability even after 3 h of exposure. After 12 h of exposure to 2 g 100 mL−1 bile salts, free and microencapsulated L. paracasei decreased 3.34 log CFU mL−1 and 2.17 log CFU g−1, respectively. No significant cell loss was observed, for free and microencapsulated form when exposed to NaCl, and microencapsulated cells survived well for 15 min at 65 °C. Moisture content of microcapsules ranged from 4.30 to 4.77 g 100 g−1. L. paracasei was found to possess desirable in vitro resistance to low pH and bile salts, and the microencapsulation in RSM and CW provided a cell protection against acidic pH and bile salts. This strain is good candidate for further investigation to elucidate its potential health benefits and in fermentation processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. FAO/WHO. Probióticos en los alimentos. Propiedades saludables y nutricionales y directrices para la evaluación: Estudio FAO Alimentación y Nutrición, Roma, 2006. 45 p. Available in: FTP:ftp.fao.org/docrep/fao/009/a512s00pdf. Accessed 12 Dec 2013

  2. De Vrese M, Schrezenmeir J (2008) Probiotics, prebiotics, and synbiotics. Adv Biochem Eng Biotechnol 111:1–66

    Google Scholar 

  3. Franz CMAP, Huch M, Mathara JM, Abriouel H, Benomar N, Reid G, Galvez A, Holzapfel WH (2014) African fermented foods and probiotics. Int J Food Microbiol 190:84–96

    Article  CAS  Google Scholar 

  4. Gregoret V, Perezlindo MJ, Vinderola G, Reinheimer J, Binetti A (2013) A comprehensive approach to determine the probiotic potential of human-derived Lactobacillus for industrial use. Food Microbiol 34:19–28

    Article  CAS  Google Scholar 

  5. Gardiner GE, O’sullivan E, Kelly J, Auty MAE, Fitzgerald GF, Collins JK, Ross RP, Stanton C (2000) Comparative survival rates of human-derived probiotic Lactobacillus paracasei and L. salivarius strains during heat treatment and spray drying. Appl Environ Microbiol 66:2605–2612

    Article  CAS  Google Scholar 

  6. Bendali F, Durand A, Hebraud M, Sadoun D (2011) Lactobacillus paracasei subsp. paracasei: an Algerian isolate with antibacterial activity against enteric pathogens and probiotic fitness. J Food Nutr Res 50(3):139–149

    Google Scholar 

  7. Thi LN, Champagne CP, Lee BH, Goulet J (2003) Growth of Lactobacillus paracasei ssp. paracasei on tofu whey. Int J Food Microbiol 89:67–75

    Article  CAS  Google Scholar 

  8. Argyri AA, Zoumpopoulou G, Karatzas KG, Tsakalidou E, Nychas GJE, Panagou EZ, Tassou CC (2013) Selection of potential probiotic lactic acid bacteria from fermented olives by in vitro tests. Food Microbiol 33:282–291

    Article  CAS  Google Scholar 

  9. Sullivan A, Palmgren AC, Nord CE (2001) Effect of Lactobacillus paracasei on intestinal colonization of lactobacilli, bifidobacteria and Clostridium difficile in eldery persons. Anaerobe 7(2):67–70

    Article  CAS  Google Scholar 

  10. Sarker SA, Sultana S, Fuchs GJ, Alam NH, Azim T, Brüssow H, Hammarström L (2005) Lactobacillus paracasei strain ST11 has no effect on rotavirus but ameliorates the outcome of nonrotavirus diarrhea in children from Bangladesh. Pediatrics 116(2):221–228

    Article  Google Scholar 

  11. Chiang Shen-Shih, Pan Tzu-Ming (2012) Beneficial effects of Lactobacillus paracasei subsp. paracasei NTU 101 and its fermented products. Appl Microbiol Biotechnol 93:903–916

    Article  CAS  Google Scholar 

  12. Mainville I, Arcand Y, Farnworth ER (2005) A dynamic model that simulates the human upper gastro-intestinal tract for the study of probiotics. Int J Food Microbiol 99:287–296

    Article  CAS  Google Scholar 

  13. Shah NP (2007) Functional cultures and health benefits. Int Dairy J 17:1262–1277

    Article  Google Scholar 

  14. Todorov SD, Dicks LMT (2008) Evaluation of lactic acid bacteria from kefir, molasses and olive brine as possible probiotics based on physiological properties. Ann Microbiol 58:661–670

    Article  Google Scholar 

  15. Jensen H, Grimmer S, Naterstad K, Axelsson L (2012) In vitro testing of commercial and potential probiotic lactic acid bacteria. Int J Food Microbiol 153:216–222

    Article  Google Scholar 

  16. Nedovic V, Kalusevic A, Manojlovic V, Levic S, Bugarski B (2011) An overview of encapsulation technologies for food applications. Procedia Food Sci. 1:1806–1815

    Article  CAS  Google Scholar 

  17. Rokka S, Rantamäki P (2010) Protecting probiotic bacteria by microencapsulation: challenges for industrial applications. Eur Food Res Technol 231:1–12

    Article  CAS  Google Scholar 

  18. Yonekura L, Sun H, Soukoulis C, Fisk I (2014) Microencapsulation of Lactobacillus acidophilus NCIMB 701748 in matrices containing soluble fibre by spray drying: technological characterization, storage stability and survival after in vitro digestion. J. Funct. Foods 6:205–214

    Article  CAS  Google Scholar 

  19. Paéz R, Lavari L, Audero G, Cuatrin A, Zaritzky N, Reinheimer J, Vinderola G (2013) Study of the effects of spray-drying on the functionality of probiotic lactobacilli. Int J Dairy Technol 66(2):155–161

    Article  Google Scholar 

  20. Semyonov D, Ramon O, Shimoni E (2011) Using ultrasonic vacuum spray dryer to produce highly viable dry probiotics. LWT-Food Sci Technol 44:1844–1852

    Article  CAS  Google Scholar 

  21. Golowczyc MA, Silva J, Teixeira P, De Antoni GL, Abraham AG (2011) Cellular injuries of spray-dried Lactobacillus spp. isolated from kefir and their impact on probiotic properties. Int J Food Microbiol 144:556–560

    Article  Google Scholar 

  22. Cook MT, Tzortzis G, Charalampopoulos D, Khutoryanskiy VV (2012) Microencapsulation of probiotics for gastrointestinal delivery. J Control Release 162:56–67

    Article  CAS  Google Scholar 

  23. Maciel GM, Chaves KS, Grosso CRF, Gigante ML (2014) Microencapsulation of Lactobacillus acidophilus La-5 by spray-drying using sweet whey and skim milk as encapsulating materials. J Dairy Sci 97:1991–1998

    Article  CAS  Google Scholar 

  24. Schell D, Beermann C (2014) Fluidized bed microencapsulation of Lactobacillus reuteri with sweet whey and shellac for improved acid resistance and in vitro gastro-intestinal survival. Food Res Int 62:308–314

    Article  CAS  Google Scholar 

  25. De Castro-Cislaghi FP, Silva CR, Fritzen-Freire CB, Lorenz JG, Sant’anna ES (2012) Bifidobacterium Bb-12 microencapsulated by spray drying with whey: survival under simulated gastrointestinal conditions, tolerance to NaCl, and viability during storage. J Food Eng 113(2):186–193

    Article  Google Scholar 

  26. Prazeres AR, Carvalho F, Rivas J (2012) Cheese whey management: a review. J Environ Manage 110:48–68

    Article  CAS  Google Scholar 

  27. Burns P, Vinderola G, Molinari F, Reinheimer J (2008) Suitability of whey and buttermilk for the growth and frozen storage of probiotic lactobacilli. Int J Dairy Technol 61(2):156–164

    Article  CAS  Google Scholar 

  28. Pimentel-González DJ, Campos-Montiel RG, Lobato-Calleros C, Pedroza-Islas R, Vernon-Carter EJ (2009) Encapsulation of Lactobacillus rhamnosus in double emulsions formulated with sweet whey as emulsifier and survival in simulated gastrointestinal conditions. Food Res Int 42:292–297

    Article  Google Scholar 

  29. Riveros B, Ferrer J, Borquez R (2009) Spray drying of a vaginal probiotic strain of Lactobacillus acidophilus. Drying Technol 27:123–132

    Article  Google Scholar 

  30. Aplevicz KS, Mazo JM, Ilha EC, Dinon AZ, Sant’Anna ES (2014) Isolation and characterization of lactic acid bacteria and yeasts from the Brazilian grape sourdough. Braz J Pharm 50(2):321–327

    Article  Google Scholar 

  31. Sheu TY, Marshall RT (1993) Microentrapment of lactobacilli in calcium alginate gels. J Food Sci 54:557–561

    Article  Google Scholar 

  32. Annan NT, Borza AD, Truelstrup HL (2008) Encapsulation in alginate-coated gelatin microspheres improves survival of the probiotic Bifidobacterium adolescentis 15703T during exposure to simulated gastro-intestinal conditions Food Res. Int 41:184–193

    CAS  Google Scholar 

  33. Krasaekoopt W, Bhandari B, Deeth H (2004) The influence of coating materials on some properties of alginate beads and survivability of microencapsulated probiotic bacteria. Int Dairy J 14:737–743

    Article  CAS  Google Scholar 

  34. IDF (International Dairy Federation) (1993) Dried milk and dried cream: determination of water content. International Dairy Federation standard 26A. Int. Dairy Federation, Brussels, Belgium

  35. Gao Y, Li D, Liu S, Liu Y (2012) Probiotic potential of L. sake C2 isolated from traditional Chinese fermented cabbage. Eur Food Res Technol 234:45–51

    Article  CAS  Google Scholar 

  36. Todorov SD, Dicks LMT (2008) Evaluation of lactic acid bacteria from kefir, molasses and olive brine as possible probiotics based on physiological properties. Ann Microbiol 58:661–670

    Article  Google Scholar 

  37. Sabikhi L, Babu R, Thompkinson DK, Kapila S (2010) Resistance of microencapsulated Lactobacillus acidophilus LA1 to processing treatments and simulated gut conditions. Food Bioprocess Technol 3:586–593

    Article  Google Scholar 

  38. Ding WK, Shah NP (2007) Acid, bile, and heat tolerance of free and microencapsulated probiotic bacteria. J Food Sci 72:M446–M450

    Article  CAS  Google Scholar 

  39. Corcoran BM, Ross RP, Fitzgerald GF, Stanton C (2004) Comparative survival of probiotic lactobacilli spray-dried in the presence of prebiotic substances. J Appl Microbiol 96:1024–1039

    Article  CAS  Google Scholar 

  40. Reddy KBP, Madhu AN, Prapulla SG (2009) Comparative survival and evaluation of functional probiotic properties of spray-dried lactic acid bacteria. Int J Dairy Technol 62(2):240–248

    Article  Google Scholar 

  41. Fu N, Chen XD (2011) Towards a maximal cell survival in convective thermal drying processes. Food Res Int 44:1127–1149

    Article  CAS  Google Scholar 

  42. Fritzen-Freire CB, Prudencio ES, Amboni RDMC, Pinto SS, Negrao-Murakami AN, Murakami FS (2012) Microencapsulation of bifidobacteria by spray drying in the presence of prebiotics. Food Res Int 45:306–312

    Article  CAS  Google Scholar 

  43. Saénz C, Tapia S, Chávez J, Robert P (2009) Microencapsulation by spray drying of bioactive compounds from cactus pear (Opuntia ficus-indica). Food Chem 114:616–622

    Article  Google Scholar 

  44. Rodríguez-Huezo ME, Durán-Lugo R, Prado-Barragán LA, Cruz-Sosa F, Lobato-Calleros C, Alvarez-Ramírez J et al (2007) Pre-selection of protective colloids for enhanced viability of Bifidobacterium bifidum following spray-drying and storage, and evaluation of aguamiel as thermoprotective prebiotic. Food Res Int 40:1299–1306

    Article  Google Scholar 

  45. Lian WC, Hsiao HC, Chou CC (2002) Survival of bifidobacteria after spray-drying. Int J Food Microbiol 74:79–86

    Article  Google Scholar 

  46. Ying DY, Phoon MC, Sanguansri L, Weerakkody R, Burgar I, Augustin MA (2010) Microencapsulated Lactobacillus rhamnosus GG powders: relationship of powder physical properties to probiotic survival during storage. J Food Sci 75(9):E588–E595

    Article  CAS  Google Scholar 

  47. Fang ZX, Bhandari B (2010) Encapsulation of polyphenols—a review. Trends Food Sci Technol 21:510–523

    Article  CAS  Google Scholar 

  48. Peighambardoust SH, Tafti AG, Hesari J (2011) Application of spray drying for preservation of lactic acid starter cultures: a review. Trends Food Sci Technol 22:215–224

    Article  CAS  Google Scholar 

  49. Favaro-Trindade CS, Grosso CRF (2002) Microencapsulation of L. acidophilus (La-05) and B. lactis (Bb-12) and evaluation of their survival at the pH values of the stomach and in bile. J Microencapsul 19:485–494

    Article  CAS  Google Scholar 

  50. Desmond C, Ross RP, O’callaghan E, Fitzgerald G, Stanton C (2002) Improved survival of Lactobacillus paracasei NFBC 338 in spray-dried powders containing gum Acacia. J Appl Microbiol 93:1003–1011

    Article  CAS  Google Scholar 

  51. Picot A, Lacroix C (2004) Encapsulation of bifidobacteria in whey protein-based microcapsules and survival in simulated gastrointestinal conditions and in yoghurt. Int Dairy J 14:505–515

    Article  CAS  Google Scholar 

  52. Paéz R, Lavari LL, Vinderola G, Audero G, Cuatrin A, Zaritzky N, Reinheimer J (2012) Effect of heat treatment and spray drying on lactobacilli viability and resistance to simulated gastrointestinal digestion. Food Res Int 48:748–754

    Article  Google Scholar 

  53. Verdenelli MCI, Ghelfi F, Silvi S, Orpianesi C, Cecchini C, Cresci A (2009) Probiotic properties of Lactobacillus rhamnosus and Lactobacillus paracasei isolated from human faeces. Eur J Nutr 48:355–363

    Article  Google Scholar 

  54. Borges S, Barbosa J, Camilo R, Carvalheira A, Silva J, Sousa S, Gomes AM, Pintado MM, Silva JP, Costa P, Amaral MH, Teixeira P, Freitas AC (2012) Effects of encapsulation on the viability of probiotic strains exposed to lethal conditions. Int J Food Sci Technol 47:416–442

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank to Electronic Microscopy Central laboratory of Federal University of Santa Catarina (LCME—UFSC).

Conflict of interest

None.

Compliance with Ethics Requirements

This article does not contain any studies with human or animal subjects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eunice Cassanego Ilha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ilha, E.C., da Silva, T., Lorenz, J.G. et al. Lactobacillus paracasei isolated from grape sourdough: acid, bile, salt, and heat tolerance after spray drying with skim milk and cheese whey. Eur Food Res Technol 240, 977–984 (2015). https://doi.org/10.1007/s00217-014-2402-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-014-2402-x

Keywords

Navigation