Skip to main content
Log in

NIR and PLS discriminant analysis for predicting the processability of malt during lautering

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

This work is focused on a new strategy for quality analysis of brewing malt using near infrared (NIR) spectra taken from malt kernels in reflection as fingerprint to classify directly to processability of malt. One part of the study deals with calibrating a partial least squares discriminant analysis (PLS-DA) model with NIR spectra classifying malt into the three different classes resulting in a five-component model. Therefore, suitable pre-processing algorithms for spectra were tested. The target for calibration is given by an expert opinion on lautering runs (filtration step in brewing). The accuracy achieved using pilot plant data in relation to the expert classification “good”, “normal” and “bad” was 90.6 and 92.7 % in validation and calibration, respectively. The second part of the study is presenting the transfer of these analytical tools to industrial scale. This was established via adjustment to corresponding system conditions. The accuracy achieved using similar algorithms as mentioned before was 93.6 and 76.6 % in calibration and validation, respectively. Independent from this, two numerical possibilities were established for automatic process evaluation classifying the different processes in three categories (good, normal, bad): the first is calculating the residual standard deviation of a process based on multivariate statistical process control and the second is discretizing each process individually based on its single online trends. Both methods were compared to the expert opinion coinciding with 84 and 85 %, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

µ:

Centroid of class S

A:

Number of components

ABOF:

Angle-based outlier factor

B :

Matrix of regression parameters

b 0 :

Vector of intercepts

d():

Distance

e i :

Vector of residuals

FAN:

Free amino nitrogen

hi :

Leverage

MLR:

Multilinear regression

MSC:

Multiplicative scatter correction

MSPC:

Multivariate statistical process control

n:

Number of sampling points

NAS:

Net analyte signals

NIR:

Near infrared

p:

Polynomial degree

p, P :

Vector/matrix of X-loadings

PC:

Principal components

PCA:

Principal component analysis

PLS-DA:

Partial least squares discriminant analysis

PLS(R):

Partial least squares (regression)

q, Q :

Vector/matrix of Y-loadings

RMSE:

Root mean squared error

RSD:

Residual standard deviation

S:

Classes

s P , b, c :

Vectors representing data point in multidimensional space

SSE:

Sum of squares

STA:

Single trend analysis

sVAST:

Supervised variable stability scaling

SVD:

Singular value decomposition

S X , S Y :

Diagonal matrix with standard deviation

t, T :

Vector/matrix of X-scores

VAST:

Variable stability scaling

VIP:

Variable importance in the projection

Vt :

Ratio of variance

w :

Vector of weight factors

w, W :

Weighted loading vector/matrix

x :

Vector of input values/NIR spectrum

X :

Matrix of input data

X T :

Matrix of restructured PLS scores

Y :

Matrix of targets

σ:

Variance

τ :

Vector of scaled time frames

^:

Predicted

¯:

Mean

a, i, j, k, n, p:

Counter

s:

Scaled

turb:

Turbidity

References

  1. Rath F (2006)Möglichkeiten der Vorhersage von Verarbeitungsrisiken im industriellen Läuterprozess auf der Basis von Laboranalysen des Malzes. In: 35. Internationales Braugerstenseminar

  2. Nischwitz R, Cole NW, MacLeod L (1999) Malting for brewhouse performance. J Inst Brew 105(4):219–227

    Article  CAS  Google Scholar 

  3. Schwill-Miedaner A, Flocke R, Sommer K (1997) Zusammenhänge zwischen Malzauflösung und Partikelgrößenverteilung des Schrotes. Brauwelt 12:412–416

    Google Scholar 

  4. Ferenczy L, Bendek G (1991) Untersuchung der Veränderung der Würzeproteinzusammensetzung während des Maischprozesses mit der SDS-PAGE-Gelelektrophorese und deren Einfluß auf das Abläutern. Monatsschrift fuer Brauwissenschaft 44(5):191–200

    CAS  Google Scholar 

  5. Moll M, Lenoel M, Flayeux R, Laperche S, Leclerc D, Baluais G (1989) The new Tepral method for malt extract determination. ASBC J 47(1):14–17

    Google Scholar 

  6. Sjoholm K, Pietila K, Home S, Aarts R, Jaakkola N (1994) Evaluation of Lautering Performance of Malt. Monatsschrift fuer Brauwissenschaft 47(5):165–171

    Google Scholar 

  7. Ellis DI, Broadhurst D, Kell DB, Rowland JJ, Goodacre R (2002) Rapid and quantitative detection of the microbial spoilage of meat by fourier transform infrared spectroscopy and machine learning. Appl Environ Microbiol 68:2822–8282

    Article  CAS  Google Scholar 

  8. Stippl V, Delgado A, Becker T (2002) Optical method for the in situ measurement of pH-value during high pressure treatment of foods. High Pressure Res 22:757–761

    Article  Google Scholar 

  9. Nicolaï BM, Beullens K, Bobelyn E, Peirs A, Saeys W, Theron KI, Lammertyn J (2007) Nondestructive measurement of fruit and vegetable quality by means of NIR spectroscopy: a review. Postharvest Biol Technol 46 (2):99–118. doi:10.1016/j.postharvbio.2007.06.024

  10. Goyal S (2013) Predicting properties of cereals using artificial neural networks: A review. Sci J Crop Sci 2(7):95–115

    Google Scholar 

  11. Meurens M, Yan SH (2002) Applications of vibrational spectroscopy in brewing. Handbook of Vibrational Spectroscopy

  12. Møller B (2004) Near infrared transmission spectra of barley of malting grade represent a physical-chemical fingerprint of the sample that is able to predict germinative vigour in a multivariate data evaluation model. J Inst Brew 110(1):18–33

    Article  Google Scholar 

  13. Nielsen JP, Bro R, Larsen J, Munck L (2002) Application of Fuzzy Logic and Near Infrared Spectroscopy for Malt Quality Evaluation. J Inst Brew 108(4):444–451. doi:10.1002/j.2050-0416.2002.tb00574.x

    Article  CAS  Google Scholar 

  14. Anger H-M (2006) Brautechnische Analysenmethoden-Rohstoffe. Selbstverlag der Mitteleuropäische Brautechnische Analysenkommission, Freising

    Google Scholar 

  15. Holtz C, Krause D, Hussein MA, Gastl M, Becker T (2014) Lautering performance prediction from malt by combining whole near-infrared spectral information with lautering process evaluation as reference values. J Am Soc Brew Chem (in press)

  16. Wold S, Kettaneh N, Fridén H, Holmberg A (1998) Modelling and diagnostics of batch processes and analogous kinetic experiments. Chemometr Intell Lab Syst 44 (1–2):331–340. doi:10.1016/S0169-7439(98)00162-2

  17. Whitehead IJ (2012) Soft sensing: using multivariate analysis for yeast propagation monitoring. Diplomarbeit, TU München

    Google Scholar 

  18. Smilde A, Bro R, Geladi P (2004) Multi-way analysis. Applications in the chemical sciences. Wiley, Chichester

    Book  Google Scholar 

  19. Axelson D (2010) Data Preprocessing for Chemometric and Metabonomic Analysis. Kingston, Ontario

    Google Scholar 

  20. Kessler W (2007) Multivariate Datenanalyse. Wiley-VCH Verlag GmbH & Co, KGaA, Weinheim

    Google Scholar 

  21. Geladi P, Kowalski BR (1986) Partial least squares regression: a tutorial. Anal Chim Acta 185:1–17

    Article  CAS  Google Scholar 

  22. Wold H (1974) Causal flows with latent variables. Partings of the ways in the light of NIPALS modelling. Eur Econ Rev 5(1):67–86

    Article  Google Scholar 

  23. Lindgren F, Geladi P, Wold S (1993) The kernel algorithm for PLS. J Chemom 7(1):45–59. doi:10.1002/cem.1180070104

    Article  CAS  Google Scholar 

  24. Krause D, Schöck T, Hussein MA, Becker T (2011) Ultrasonic characterization of aqueous solutions with varying sugar and ethanol content using multivariate regression methods. J Chemometr 25(4):216–223. doi:10.1002/cem.1384

    Article  CAS  Google Scholar 

  25. Golub GH, Reinsch C (1970) Singular value decomposition and least squares solutions. Numer Math 14(5):403–420. doi:10.1007/BF02163027

    Article  Google Scholar 

  26. De Jong S, Ter Braak CJF (1994) Comments on the PLS kernel algorithm. J Chemom 8(2):169–174. doi:10.1002/cem.1180080208

    Article  Google Scholar 

  27. Martens H, Næs T (1991) Multivariate calibration. Wiley

  28. Jørgensen B, Goegebeur Y (2012) Module 8: partial least squares regression II. http://statmaster.sdu.dk/courses/ST02/index.html. Accessed 03.05. 2012

  29. Barker MR, Rayens W (2003) Partial least squares for discrimination. J Chemom 17(3):166–173

    Article  CAS  Google Scholar 

  30. Serrano CC, Gutierrez NB (2011) Partial least square discriminant analysis (PLS-DA) for bankruptcy prediction

  31. Indahl UG, Martens H, Næs T (2007) From dummy regression to prior probabilities in PLS-DA. J Chemometrics 21:529–536. doi:10.1002/cem.1061

    Article  CAS  Google Scholar 

  32. Hicham Nocairi EMQ, Evelyne Vigneau, Dominique Bertrand (2005) Discrimination on latent components with respect to patterns. Application to multicollinear data original. Comput Stat Data Anal 1 (1):139–147

  33. Teófilo RF, Martins JPA, Ferreira MMC (2009) Sorting variables by using informative vectors as a strategy for feature selection in multivariate regression. J Chemom 23(1):32–48. doi:10.1002/cem.1192

    Article  Google Scholar 

  34. Sorol N, Arancibia E, Bortolato SA, Olivieri AC (2010) Visible/near infrared-partial least-squares analysis of Brix in sugar cane juice A test field for variable selection methods. Chemometr Intell Lab Syst 102(2):100–109. doi:10.1016/j.chemolab.2010.04.009

    Article  CAS  Google Scholar 

  35. Kriegel H-P, Hubert MS, Zimek A (2008) Angle-based outlier detection in high-dimensional data. Proceedings of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining, pp 444–452. doi:10.1145/1401890.1401946

  36. Botella C, Ferré J, Boqué R (2010) Outlier detection and ambiguity detection for microarray data in probabilistic discriminant partial least squares regression. J Chemom 24(7–8):434–443. doi:10.1002/cem.1304

    Article  CAS  Google Scholar 

  37. Hastie T, Tibshirani R, Friedman J (2001) The elements of statistical learning, vol 1. Springer, New York

    Book  Google Scholar 

  38. Melgani F, Bazi Y (2008) Classification of electrocardiogram signals with support vector machines and particle swarm optimization. IEEE Trans Inform Technol Biomed 12(5):667–677

    Article  Google Scholar 

  39. Chuang L-Y, Yang C-H, Yang C-H (2009) Tabu search and binary particle swarm optimization for feature selection using microarray data. J Comput Biol 16(12):1689–1703

    Article  CAS  Google Scholar 

  40. Benoudjit N, Melgani F, Bouzgou H (2009) Multiple regression systems for spectrophotometric data analysis. Chemometr Intell Lab Syst 95(2):144–149. doi:10.1016/j.chemolab.2008.10.001

    Article  CAS  Google Scholar 

  41. Shi Z, Cogdill RP, Martens H, Anderson CA (2010) Optical coefficient-based multivariate calibration on near-infrared spectroscopy. J Chemom 24(5):288–299. doi:10.1002/cem.1301

    Google Scholar 

Download references

Acknowledgments

This work was partially funded by the “Bundesministerium fuer Wirtschaft und Technologie” (via AiF) through the research project AIF 16529 N/1 in cooperation with “Wissenschaftsförderung der Deutschen Brauwirtschaft e.V”.

Conflict of interest

None.

Compliance with Ethics Requirements

This article does not contain any studies with human or animal subjects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Krause.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krause, D., Holtz, C., Gastl, M. et al. NIR and PLS discriminant analysis for predicting the processability of malt during lautering. Eur Food Res Technol 240, 831–846 (2015). https://doi.org/10.1007/s00217-014-2389-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-014-2389-3

Keywords

Navigation