Skip to main content

Retention of glucosinolates during fermentation of Brassica juncea: a case study on production of sayur asin

Abstract

Fermentation can reduce the concentration of health-promoting glucosinolates in Brassica vegetables. The endogenous enzyme myrosinase is hypothesised to mainly responsible for the degradation of glucosinolates during fermentation. In order to retain glucosinolates in the final fermented product, the role of myrosinase activity during the production of sayur asin was investigated. Sayur asin is a traditionally fermented product of Indian mustard (Brassica juncea) commonly consumed in Indonesia. It is prepared by a spontaneous fermentation of withered (sun-dried) B. juncea leaves. The leaves of B. juncea contain a substantial amount of the aliphatic glucosinolate sinigrin. Three withering methods were investigated to obtain B. juncea leaves with different myrosinase activities prior to fermentation. Results show that withering by oven at 35 °C for 2.5 h and by microwave at 180 W for 4.5 min reduced myrosinase activity by 84 and 74 %, respectively. Subsequently, sinigrin was not detectable in the leaves after 24 h of incubation in the fermentation medium. However, withering by microwave for 2 min at 900 W inactivated myrosinase completely and produced sayur asin with a sinigrin concentration of 11.4 µmol/10 g dry matter after 7 days of fermentation. This high power-short time pretreatment of B. juncea leaves contributes to the production of sayur asin containing significant levels of health-promoting glucosinolate. In this study, the effect of myrosinase activity during Brassica fermentation was quantified, and optimised production methods were investigated to retain glucosinolate in the final product.

This is a preview of subscription content, access via your institution.

References

  1. Clarke DB (2010) Glucosinolates, structures and analysis in food. Anal Method 2:310–325

    CAS  Article  Google Scholar 

  2. Verkerk R, Schreiner M, Krumbein A, Ciska E, Holst B, Rowland I, De Schrijver R, Hansen M, Gerhäuser C, Mithen R (2009) Glucosinolates in Brassica vegetables: the influence of the food supply chain on intake, bioavailability and human health. Mol Nutr Food Res 53:S219–S265

    Article  Google Scholar 

  3. Halkier BA, Gershenzon J (2006) Biology and biochemistry of glucosinolates. Annu Rev Plant Biol 57:303–333

    CAS  Article  Google Scholar 

  4. Cartea ME, Velasco P (2008) Glucosinolates in Brassica foods: bioavailability in food and significance for human health. Phytochem Rev 7:213–229

    CAS  Article  Google Scholar 

  5. Herr I, Büchler MW (2010) Dietary constituents of broccoli and other cruciferous vegetables: implications for prevention and therapy of cancer. Cancer Treat Rev 36:377–383

    CAS  Article  Google Scholar 

  6. Traka M, Mithen R (2009) Glucosinolates, isothiocyanates and human health. Phytochem Rev 8:269–282

    CAS  Article  Google Scholar 

  7. Bones AM, Rossiter JT (2006) The enzymic and chemically induced decomposition of glucosinolates. Phytochemistry 67:1053–1067

    CAS  Article  Google Scholar 

  8. Caplice E, Fitzgerald GF (1999) Food fermentations: role of microorganisms in food production and preservation. Int J Food Microbiol 50:131–149

    CAS  Article  Google Scholar 

  9. Tolonen M, Taipale M, Viander B, Pihlava JM, Korhonen H, Ryhänen EL (2002) Plant-derived biomolecules in fermented cabbage. J Agric Food Chem 50:6798–6803

    CAS  Article  Google Scholar 

  10. Ciska E, Pathak DR (2004) Glucosinolate derivatives in stored fermented cabbage. J Agric Food Chem 52:7938–7943

    CAS  Article  Google Scholar 

  11. Martinez-Villaluenga C, Peñas E, Frias J, Ciska E, Honke J, Piskula M, Kozlowska H, Vidal-Valverde C (2009) Influence of fermentation conditions on glucosinolates, ascorbigen, and ascorbic acid content in white cabbage (Brassica oleracea var. capitata cv. Taler) cultivated in different seasons. J Food Sci 74:C62–C67

    CAS  Article  Google Scholar 

  12. Kim MR, Rhee HS (1993) Decrease of pungency in “radish kimchi” during fermentation. J Food Sci 58:128–131

    CAS  Article  Google Scholar 

  13. Nugrahedi PY, Verkerk R, Widianarko B, Dekker M (2013) A mechanistic perspective on process induced changes in glucosinolate content in Brassica vegetables: a review. Crit Rev Food Sci Nutr. doi:10.1080/10408398.2012.688076

  14. Ruiz-Rodriguez A, Marín FR, Ocaña A, Soler-Rivas C (2008) Effect of domestic processing on bioactive compounds. Phytochem Rev 7:345–384

    CAS  Article  Google Scholar 

  15. Sarvan I, Valerio F, Lonigro SL, de Candia S, Verkerk R, Dekker M, Lavermicocca P (2013) Glucosinolate content of blanched cabbage (Brassica oleracea var. capitata) fermented by the probiotic strain Lactobacillus paracasei LMG-P22043. Food Res Int 54:706–710

    CAS  Article  Google Scholar 

  16. Puspito H, Fleet GH (1985) Microbiology of sayur asin fermentation. Appl Microbiol Biotechnol 22:442–445

    CAS  Google Scholar 

  17. Lee C-H (1997) Lactic acid fermented foods and their benefits in Asia. Food Control 8:259–269

    Article  Google Scholar 

  18. Nugrahedi PY, Priatko CA, Verkerk R, Dekker M, Widianarko B (2013) Reduction of glucosinolates content during sayur asin production. Jurnal Teknologi dan Industri Pangan (Journal of Food Technology and Industry) 24:236–240

    Google Scholar 

  19. Oliviero T, Verkerk R, Vermeulen M, Dekker M (2014) In vivo formation and bioavailability of isothiocyanates from glucosinolates in broccoli as affected by processing conditions. Mol Nutr Food Res 58:1447–1456

    CAS  Article  Google Scholar 

  20. Shapiro TA, Fahey JW, Wade KL, Stephenson KK, Talalay P (1998) Human metabolism and excretion of cancer chemoprotective glucosinolates and isothiocyanates of cruciferous vegetables. Cancer Epidemiol Biomark Prev 7:1091–1100

    CAS  Google Scholar 

  21. Chao S-H, Wu R-J, Watanabe K, Tsai Y-C (2009) Diversity of lactic acid bacteria in suan-tsai and fu-tsai, traditional fermented mustard products of Taiwan. Int J Food Microbiol 135:203–210

    Article  Google Scholar 

  22. Van Eylen D, Indrawati O, Hendrickx M, Van Loey A (2006) Temperature and pressure stability of mustard seed (Sinapis alba L.) myrosinase. Food Chem 97:263–271

    Article  Google Scholar 

  23. Verkerk R, Dekker M (2004) Glucosinolates and myrosinase activity in red cabbage (Brassica oleracea L. var. Capitata f. rubra DC.) after various microwave treatments. J Agric Food Chem 52:7318–7323

    CAS  Article  Google Scholar 

  24. Fuller Z, Louis P, Mihajlovski A, Rungapamestry V, Ratcliffe B, Duncan AJ (2007) Influence of cabbage processing methods and prebiotic manipulation of colonic microflora on glucosinolate breakdown in man. Brit J Nutr 98:364–372

    CAS  Article  Google Scholar 

  25. Rungapamestry V, Duncan AJ, Fuller Z, Ratcliffe B (2006) Changes in glucosinolate concentrations, myrosinase activity, and production of metabolites of glucosinolates in cabbage (Brassica oleracea var. capitata) cooked for different durations. J Agric Food Chem 54:7628–7634

    CAS  Article  Google Scholar 

  26. Ludikhuyze L, Ooms V, Weemaes C, Hendrickx M (1999) Kinetic study of the irreversible thermal and pressure inactivation of myrosinase from broccoli (Brassica oleracea L. cv. Italica). J Agric Food Chem 47:1794–1800

    CAS  Article  Google Scholar 

  27. Yen GC, Wei QK (1993) Myrosinase activity and total glucosinolate content of cruciferous vegetables, and some properties of cabbage myrosinase in Taiwan. J Sci Food Agric 61:471–475

    CAS  Article  Google Scholar 

  28. Oliviero T, Verkerk R, Van Boekel M, Dekker M (2014) Effect of water content and temperature on inactivation kinetics of myrosinase in broccoli (Brassica oleracea var. italica). Food Chem 163:197–201

    CAS  Article  Google Scholar 

  29. Xiao D, Srivastava SK, Lew KL, Zeng Y, Hershberger P, Johnson CS, Trump DL, Singh SV (2003) Allyl isothiocyanate, a constituent of cruciferous vegetables, inhibits proliferation of human prostate cancer cells by causing G2/M arrest and inducing apoptosis. Carcinogenesis 24:891–897

    CAS  Article  Google Scholar 

  30. Bhattacharya A, Tang L, Li Y, Geng F, Paonessa JD, Chen SC, Wong MK, Zhang Y (2010) Inhibition of bladder cancer development by allyl isothiocyanate. Carcinogenesis 31:281–286

    CAS  Article  Google Scholar 

  31. Font R, del Río M, Fernández-Martínez JM, de Haro-Bailón A (2004) Use of near-infrared spectroscopy for screening the individual and total glucosinolate contents in Indian mustard seed (Brassica juncea L. Czern. & Coss.). J Agric Food Chem 52:3563–3569

    CAS  Article  Google Scholar 

  32. He H, Fingerling G, Schnitzler W (2003) Changes in glucosinolate concentrations during growing stages of tai tsai (Brassica campestris L. ssp. chinensis var. tai-tsai Hort.) and potherb mustard (Brassica juncea Coss.). Acta Hort 620:77–84

    CAS  Google Scholar 

  33. Krumbein A, Schonhof I, Schreiner M (2005) Composition and contents of phytochemicals (glucosinolates, carotenoids and chlorophylls) and ascorbic acid in selected Brassica species (B. juncea, B. rapa subsp. nipposinica var. chinoleifera, B. rapa subsp. chinensis and B. rapa subsp. rapa). J Appl Bot Food Qual 79:168–174

    CAS  Google Scholar 

  34. Palmer MV, Yeung SP, Sang JP (1987) Glucosinolate content of seedlings, tissue cultures, and regenerant plants of Brassica juncea (Indian mustard). J Agric Food Chem 35:262–265

    CAS  Article  Google Scholar 

  35. He H, Liu L, Song S, Tang X, Wang Y (2003) Evaluation of glucosinolate composition and contents in Chinese Brassica vegetables. Acta Hort 620:85–92

    CAS  Google Scholar 

  36. Suzuki C, Ohnishi-Kameyama M, Sasaki K, Murata T, Yoshida M (2006) Behavior of glucosinolates in pickling cruciferous vegetables. J Agric Food Chem 54:9430–9436

    CAS  Article  Google Scholar 

  37. Higdon JV, Delage B, Williams DE, Dashwood RH (2007) Cruciferous vegetables and human cancer risk: epidemiologic evidence and mechanistic basis. Pharmacol Res 55:224–236

    CAS  Article  Google Scholar 

  38. Krul C, Humblot C, Philippe C, Vermeulen M, van Nuenen M, Havenaar R, Rabot S (2002) Metabolism of sinigrin (2-propenyl glucosinolate) by the human colonic microflora in a dynamic in vitro large-intestinal model. Carcinogenesis 23:1009–1016

    CAS  Article  Google Scholar 

  39. Rungapamestry V, Duncan AJ, Fuller Z, Ratcliffe B (2007) Effect of cooking brassica vegetables on the subsequent hydrolysis and metabolic fate of glucosinolates. P Nutr Soc 66:69–81

    CAS  Article  Google Scholar 

  40. Plengvidhya V, Breidt F, Lu Z, Fleming HP (2007) DNA fingerprinting of lactic acid bacteria in sauerkraut fermentations. Appl Environ Microbiol 73:7697–7702

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The project entitled Glucosinolates Behaviour throughout the Production of “Sayur Asin” was funded by the International Foundation for Science (IFS, Sweden), Grant No. E/5360-1. The authors thank Xandra Bakker-de Haan for the microbiological analysis assistance.

Conflict of interest

None.

Compliance with Ethics Requirements

This article does not contain any studies with human or animal subjects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruud Verkerk.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nugrahedi, P.Y., Widianarko, B., Dekker, M. et al. Retention of glucosinolates during fermentation of Brassica juncea: a case study on production of sayur asin . Eur Food Res Technol 240, 559–565 (2015). https://doi.org/10.1007/s00217-014-2355-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-014-2355-0

Keywords

  • Glucosinolate
  • Myrosinase activity
  • Fermentation
  • Brassica juncea