European Food Research and Technology

, Volume 240, Issue 3, pp 559–565 | Cite as

Retention of glucosinolates during fermentation of Brassica juncea: a case study on production of sayur asin

  • Probo Y. Nugrahedi
  • Budi Widianarko
  • Matthijs Dekker
  • Ruud VerkerkEmail author
  • Teresa Oliviero
Original Paper


Fermentation can reduce the concentration of health-promoting glucosinolates in Brassica vegetables. The endogenous enzyme myrosinase is hypothesised to mainly responsible for the degradation of glucosinolates during fermentation. In order to retain glucosinolates in the final fermented product, the role of myrosinase activity during the production of sayur asin was investigated. Sayur asin is a traditionally fermented product of Indian mustard (Brassica juncea) commonly consumed in Indonesia. It is prepared by a spontaneous fermentation of withered (sun-dried) B. juncea leaves. The leaves of B. juncea contain a substantial amount of the aliphatic glucosinolate sinigrin. Three withering methods were investigated to obtain B. juncea leaves with different myrosinase activities prior to fermentation. Results show that withering by oven at 35 °C for 2.5 h and by microwave at 180 W for 4.5 min reduced myrosinase activity by 84 and 74 %, respectively. Subsequently, sinigrin was not detectable in the leaves after 24 h of incubation in the fermentation medium. However, withering by microwave for 2 min at 900 W inactivated myrosinase completely and produced sayur asin with a sinigrin concentration of 11.4 µmol/10 g dry matter after 7 days of fermentation. This high power-short time pretreatment of B. juncea leaves contributes to the production of sayur asin containing significant levels of health-promoting glucosinolate. In this study, the effect of myrosinase activity during Brassica fermentation was quantified, and optimised production methods were investigated to retain glucosinolate in the final product.


Glucosinolate Myrosinase activity Fermentation Brassica juncea 



The project entitled Glucosinolates Behaviour throughout the Production of “Sayur Asin” was funded by the International Foundation for Science (IFS, Sweden), Grant No. E/5360-1. The authors thank Xandra Bakker-de Haan for the microbiological analysis assistance.

Conflict of interest


Compliance with Ethics Requirements

This article does not contain any studies with human or animal subjects.


  1. 1.
    Clarke DB (2010) Glucosinolates, structures and analysis in food. Anal Method 2:310–325CrossRefGoogle Scholar
  2. 2.
    Verkerk R, Schreiner M, Krumbein A, Ciska E, Holst B, Rowland I, De Schrijver R, Hansen M, Gerhäuser C, Mithen R (2009) Glucosinolates in Brassica vegetables: the influence of the food supply chain on intake, bioavailability and human health. Mol Nutr Food Res 53:S219–S265CrossRefGoogle Scholar
  3. 3.
    Halkier BA, Gershenzon J (2006) Biology and biochemistry of glucosinolates. Annu Rev Plant Biol 57:303–333CrossRefGoogle Scholar
  4. 4.
    Cartea ME, Velasco P (2008) Glucosinolates in Brassica foods: bioavailability in food and significance for human health. Phytochem Rev 7:213–229CrossRefGoogle Scholar
  5. 5.
    Herr I, Büchler MW (2010) Dietary constituents of broccoli and other cruciferous vegetables: implications for prevention and therapy of cancer. Cancer Treat Rev 36:377–383CrossRefGoogle Scholar
  6. 6.
    Traka M, Mithen R (2009) Glucosinolates, isothiocyanates and human health. Phytochem Rev 8:269–282CrossRefGoogle Scholar
  7. 7.
    Bones AM, Rossiter JT (2006) The enzymic and chemically induced decomposition of glucosinolates. Phytochemistry 67:1053–1067CrossRefGoogle Scholar
  8. 8.
    Caplice E, Fitzgerald GF (1999) Food fermentations: role of microorganisms in food production and preservation. Int J Food Microbiol 50:131–149CrossRefGoogle Scholar
  9. 9.
    Tolonen M, Taipale M, Viander B, Pihlava JM, Korhonen H, Ryhänen EL (2002) Plant-derived biomolecules in fermented cabbage. J Agric Food Chem 50:6798–6803CrossRefGoogle Scholar
  10. 10.
    Ciska E, Pathak DR (2004) Glucosinolate derivatives in stored fermented cabbage. J Agric Food Chem 52:7938–7943CrossRefGoogle Scholar
  11. 11.
    Martinez-Villaluenga C, Peñas E, Frias J, Ciska E, Honke J, Piskula M, Kozlowska H, Vidal-Valverde C (2009) Influence of fermentation conditions on glucosinolates, ascorbigen, and ascorbic acid content in white cabbage (Brassica oleracea var. capitata cv. Taler) cultivated in different seasons. J Food Sci 74:C62–C67CrossRefGoogle Scholar
  12. 12.
    Kim MR, Rhee HS (1993) Decrease of pungency in “radish kimchi” during fermentation. J Food Sci 58:128–131CrossRefGoogle Scholar
  13. 13.
    Nugrahedi PY, Verkerk R, Widianarko B, Dekker M (2013) A mechanistic perspective on process induced changes in glucosinolate content in Brassica vegetables: a review. Crit Rev Food Sci Nutr. doi: 10.1080/10408398.2012.688076
  14. 14.
    Ruiz-Rodriguez A, Marín FR, Ocaña A, Soler-Rivas C (2008) Effect of domestic processing on bioactive compounds. Phytochem Rev 7:345–384CrossRefGoogle Scholar
  15. 15.
    Sarvan I, Valerio F, Lonigro SL, de Candia S, Verkerk R, Dekker M, Lavermicocca P (2013) Glucosinolate content of blanched cabbage (Brassica oleracea var. capitata) fermented by the probiotic strain Lactobacillus paracasei LMG-P22043. Food Res Int 54:706–710CrossRefGoogle Scholar
  16. 16.
    Puspito H, Fleet GH (1985) Microbiology of sayur asin fermentation. Appl Microbiol Biotechnol 22:442–445Google Scholar
  17. 17.
    Lee C-H (1997) Lactic acid fermented foods and their benefits in Asia. Food Control 8:259–269CrossRefGoogle Scholar
  18. 18.
    Nugrahedi PY, Priatko CA, Verkerk R, Dekker M, Widianarko B (2013) Reduction of glucosinolates content during sayur asin production. Jurnal Teknologi dan Industri Pangan (Journal of Food Technology and Industry) 24:236–240Google Scholar
  19. 19.
    Oliviero T, Verkerk R, Vermeulen M, Dekker M (2014) In vivo formation and bioavailability of isothiocyanates from glucosinolates in broccoli as affected by processing conditions. Mol Nutr Food Res 58:1447–1456CrossRefGoogle Scholar
  20. 20.
    Shapiro TA, Fahey JW, Wade KL, Stephenson KK, Talalay P (1998) Human metabolism and excretion of cancer chemoprotective glucosinolates and isothiocyanates of cruciferous vegetables. Cancer Epidemiol Biomark Prev 7:1091–1100Google Scholar
  21. 21.
    Chao S-H, Wu R-J, Watanabe K, Tsai Y-C (2009) Diversity of lactic acid bacteria in suan-tsai and fu-tsai, traditional fermented mustard products of Taiwan. Int J Food Microbiol 135:203–210CrossRefGoogle Scholar
  22. 22.
    Van Eylen D, Indrawati O, Hendrickx M, Van Loey A (2006) Temperature and pressure stability of mustard seed (Sinapis alba L.) myrosinase. Food Chem 97:263–271CrossRefGoogle Scholar
  23. 23.
    Verkerk R, Dekker M (2004) Glucosinolates and myrosinase activity in red cabbage (Brassica oleracea L. var. Capitata f. rubra DC.) after various microwave treatments. J Agric Food Chem 52:7318–7323CrossRefGoogle Scholar
  24. 24.
    Fuller Z, Louis P, Mihajlovski A, Rungapamestry V, Ratcliffe B, Duncan AJ (2007) Influence of cabbage processing methods and prebiotic manipulation of colonic microflora on glucosinolate breakdown in man. Brit J Nutr 98:364–372CrossRefGoogle Scholar
  25. 25.
    Rungapamestry V, Duncan AJ, Fuller Z, Ratcliffe B (2006) Changes in glucosinolate concentrations, myrosinase activity, and production of metabolites of glucosinolates in cabbage (Brassica oleracea var. capitata) cooked for different durations. J Agric Food Chem 54:7628–7634CrossRefGoogle Scholar
  26. 26.
    Ludikhuyze L, Ooms V, Weemaes C, Hendrickx M (1999) Kinetic study of the irreversible thermal and pressure inactivation of myrosinase from broccoli (Brassica oleracea L. cv. Italica). J Agric Food Chem 47:1794–1800CrossRefGoogle Scholar
  27. 27.
    Yen GC, Wei QK (1993) Myrosinase activity and total glucosinolate content of cruciferous vegetables, and some properties of cabbage myrosinase in Taiwan. J Sci Food Agric 61:471–475CrossRefGoogle Scholar
  28. 28.
    Oliviero T, Verkerk R, Van Boekel M, Dekker M (2014) Effect of water content and temperature on inactivation kinetics of myrosinase in broccoli (Brassica oleracea var. italica). Food Chem 163:197–201CrossRefGoogle Scholar
  29. 29.
    Xiao D, Srivastava SK, Lew KL, Zeng Y, Hershberger P, Johnson CS, Trump DL, Singh SV (2003) Allyl isothiocyanate, a constituent of cruciferous vegetables, inhibits proliferation of human prostate cancer cells by causing G2/M arrest and inducing apoptosis. Carcinogenesis 24:891–897CrossRefGoogle Scholar
  30. 30.
    Bhattacharya A, Tang L, Li Y, Geng F, Paonessa JD, Chen SC, Wong MK, Zhang Y (2010) Inhibition of bladder cancer development by allyl isothiocyanate. Carcinogenesis 31:281–286CrossRefGoogle Scholar
  31. 31.
    Font R, del Río M, Fernández-Martínez JM, de Haro-Bailón A (2004) Use of near-infrared spectroscopy for screening the individual and total glucosinolate contents in Indian mustard seed (Brassica juncea L. Czern. & Coss.). J Agric Food Chem 52:3563–3569CrossRefGoogle Scholar
  32. 32.
    He H, Fingerling G, Schnitzler W (2003) Changes in glucosinolate concentrations during growing stages of tai tsai (Brassica campestris L. ssp. chinensis var. tai-tsai Hort.) and potherb mustard (Brassica juncea Coss.). Acta Hort 620:77–84Google Scholar
  33. 33.
    Krumbein A, Schonhof I, Schreiner M (2005) Composition and contents of phytochemicals (glucosinolates, carotenoids and chlorophylls) and ascorbic acid in selected Brassica species (B. juncea, B. rapa subsp. nipposinica var. chinoleifera, B. rapa subsp. chinensis and B. rapa subsp. rapa). J Appl Bot Food Qual 79:168–174Google Scholar
  34. 34.
    Palmer MV, Yeung SP, Sang JP (1987) Glucosinolate content of seedlings, tissue cultures, and regenerant plants of Brassica juncea (Indian mustard). J Agric Food Chem 35:262–265CrossRefGoogle Scholar
  35. 35.
    He H, Liu L, Song S, Tang X, Wang Y (2003) Evaluation of glucosinolate composition and contents in Chinese Brassica vegetables. Acta Hort 620:85–92Google Scholar
  36. 36.
    Suzuki C, Ohnishi-Kameyama M, Sasaki K, Murata T, Yoshida M (2006) Behavior of glucosinolates in pickling cruciferous vegetables. J Agric Food Chem 54:9430–9436CrossRefGoogle Scholar
  37. 37.
    Higdon JV, Delage B, Williams DE, Dashwood RH (2007) Cruciferous vegetables and human cancer risk: epidemiologic evidence and mechanistic basis. Pharmacol Res 55:224–236CrossRefGoogle Scholar
  38. 38.
    Krul C, Humblot C, Philippe C, Vermeulen M, van Nuenen M, Havenaar R, Rabot S (2002) Metabolism of sinigrin (2-propenyl glucosinolate) by the human colonic microflora in a dynamic in vitro large-intestinal model. Carcinogenesis 23:1009–1016CrossRefGoogle Scholar
  39. 39.
    Rungapamestry V, Duncan AJ, Fuller Z, Ratcliffe B (2007) Effect of cooking brassica vegetables on the subsequent hydrolysis and metabolic fate of glucosinolates. P Nutr Soc 66:69–81CrossRefGoogle Scholar
  40. 40.
    Plengvidhya V, Breidt F, Lu Z, Fleming HP (2007) DNA fingerprinting of lactic acid bacteria in sauerkraut fermentations. Appl Environ Microbiol 73:7697–7702CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Probo Y. Nugrahedi
    • 1
    • 2
  • Budi Widianarko
    • 2
  • Matthijs Dekker
    • 1
  • Ruud Verkerk
    • 1
    Email author
  • Teresa Oliviero
    • 1
  1. 1.Food Quality and Design Group, Department of Agrotechnology and Food ScienceWageningen UniversityWageningenThe Netherlands
  2. 2.Department of Food TechnologySoegijapranata Catholic UniversitySemarangIndonesia

Personalised recommendations