Advertisement

European Food Research and Technology

, Volume 240, Issue 2, pp 335–343 | Cite as

Experimental and theoretical study of bisphenol A migration from polycarbonate into regulated EU food simulant

  • A. Torres
  • C. Ramirez
  • J. Romero
  • G. Guerrero
  • X. Valenzuela
  • A. Guarda
  • M. J. Galotto
Original Paper

Abstract

The specific migration of [2,2-bis(4 hydroxyphenyl) propane] from polycarbonate films into ethanol 50 % food simulant was studied. A phenomenological model based on a resistances-in-series system was resolved through the regula falsi algorithm. The diffusion–convection model was not able to describe the BPA concentration change as a function of time after 40 h, since an equilibrium condition with a plateau is not achieved. BPA generation due to PC hydrolysis produces an increase in BPA concentration. The continuous generation of BPA can be described by a generation–diffusion–convection model, where BPA generation obeys to a pseudo-zero-order reaction.

Keywords

Bisphenol A Migration Diffusion coefficient Food safety 

Notes

Acknowledgments

The authors thank the National Commission for Scientific and Technological Research (CONICYT), for its financial support from the National Fund for Scientific and Technological Development, FONDECYT [Grant No. 1120368], FONDEF Project D09I1043, “Propuesta Científica de Normativa para el Desarrollo de Envases Plásticos Inocuos: Una Metodología Científica Tecnológica de Apoyo a Instituciones Públicas y Privadas para Fortalecer la Estrategia Nacional de Consolidación de la Industria Alimentaria”, and for its financial support of Basal Financing Program Science and Technological Centers of Excellence [Grant No. F0807].

Conflict of interest

None.

Compliance with Ethics Requirements

This article does not contain any studies with human or animal subjects.

References

  1. 1.
    Wagner M, Oehlmann J (2009) Endocrine disruptors in bottled mineral water: total estrogenic burden and migration from plastic bottles. Environ Sci Pollut Res 16:278–286CrossRefGoogle Scholar
  2. 2.
    Hoekstra EJ, Simoneau C (2013) Release of bisphenol A from polycarbonte—a review. Crit Rev Food Sci Nutr 53(4):386–402CrossRefGoogle Scholar
  3. 3.
    Mercea P (2009) Physicochemical processes involved in migration of bisphenol a from polycarbonate. J Appl Polym Sci 112:579–593CrossRefGoogle Scholar
  4. 4.
    Nam S, Seo Y, Kim M (2010) Bisphenol A migration from polycarbonate baby bottle with repeated use. Chemosphere 79:949–952CrossRefGoogle Scholar
  5. 5.
    Santillana MI, Ruiz E, Nieto MT, de Quirós ARB, Sendón R, Cirugeda ME, Sanchez JJ (2013) Polycarbonate baby bottles: study of the release of bisphenol A. Eur Food Res Technol 236:883–889CrossRefGoogle Scholar
  6. 6.
    De Coensel N, David F, Sandra P (2009) Study on the migration of bisphenol-A from baby bottles by stir bar sorptive extraction–thermal desorption–capillary GC–MS. J Sep Sci 32(21):3829–3836CrossRefGoogle Scholar
  7. 7.
    Erler C, Novak J (2010) Bisphenol A exposure: human risk and health policy. J Pediatr Nurs 25(5):400–407CrossRefGoogle Scholar
  8. 8.
    EC (2011) EU directive no. 2011/10/EC relating to plastics materials and articles intended to come into contact with foodstuffs. Off J L12:1–89Google Scholar
  9. 9.
    Kawamura Y, Koyama Y, Takeda Y, Yamada T (1998) Migration of bisphenol A from polycarbonate products. J Food Hyg Soc Jpn 99:206–212CrossRefGoogle Scholar
  10. 10.
    Dopico-García MS, López-Vilariño JM, González-Rodríguez MV (2006) Effect of temperature and type of food simulant on antioxidant stability. J Appl Polym Sci 100:656–663CrossRefGoogle Scholar
  11. 11.
    Galotto MJ, Torres A, Guarda A, Moraga N, Romero J (2011) Experimental and theoretical study of LDPE versus different concentrations of Irganox 1076 and different thickness. Food Res Int 44:566–574CrossRefGoogle Scholar
  12. 12.
    CEN ENV 1186-1 (1993) Materials and articles in contact with foodstuffs—plastics substances subject to limitation. Part 1: guide to the selection of conditions and test methods for overall migrationGoogle Scholar
  13. 13.
    CEN ENV 13130-1 (2005) Materials and articles in contact with foodstuffs—plastics substances subject to limitation. Part 1: guide to test methods for the specific migration of substances from plastics to foods and food simulants and the determination of substances in plastics and the selection of conditions of exposure to food simulantsGoogle Scholar
  14. 14.
    Torres A, Guarda A, Moraga N, Romero J, Galotto MJ (2012) Experimental and theoretical study of thermodynamics and transport properties of multilayer polymeric food packaging. Eur Food Res Technol 234(4):713–722CrossRefGoogle Scholar
  15. 15.
    Ballesteros-Gómez A, Rubio S, Pérez-Bendito D (2009) Analytical methods for the determination of bisphenol A in food: a review. J Chromatogr A 1216:449–469CrossRefGoogle Scholar
  16. 16.
    Bair HE, Falcone DR, Hellman MY, Johnson GE, Kelleher PG (1981) Hydrolysis of polycarbonate to yield BPA. J Appl Polym Sci 26:1777–1786CrossRefGoogle Scholar
  17. 17.
    Deirram N, Rahmat AR, Rashidi S, Ghanbari T, Moradpour M (2012) Hydrolysis degradation of polycarbonate under microwave irradiation by using design of experiment software. Sci Res Essay 7:3399–3405Google Scholar
  18. 18.
    Ehlert KA, Beumer CWE, Groot MCE (2008) Migration of bisphenol A into water fron polycarbonate baby bottles during microwave heating. Food Addit Contam 25(7):904–910CrossRefGoogle Scholar
  19. 19.
    Wright DC (2001) Failure of polymer products due to chemical attack. Smithers Rapra Publishing, UKGoogle Scholar
  20. 20.
    Crank J (1975) The mathematical of diffusion, 2nd edn. Clarendon Press, LondonGoogle Scholar
  21. 21.
    Torres A, Romero J, Macan A, Guarda A, Galotto MJ (2014) Near critical and supercritical impregnation and kinetic release of thymol in LLDPE films used for food packaging. J Supercrit Fluids 85:41–48CrossRefGoogle Scholar
  22. 22.
    Galotto MJ, Torre A, Guarda A, Moraga N, Romero J (2011) Experimental and theoretical study of LDPE: evaluation of different food simulants and temperatures. Food Res Int 44:3072–3078CrossRefGoogle Scholar
  23. 23.
    Song X, Liu F, Li L, Yang X, Yu S, Ge X (2013) Hydrolysis of polycarbonate catalyzed by ionic liquid [Bmim][Ac]. J Hazard Mater 244–245:204–208CrossRefGoogle Scholar
  24. 24.
    Helmroth E, Rijk R, Dekker M, Jongen. w (2002) Predictive modelling of migration from packaging materials into food products for regulatory purposes. Trends Food Sci Technol 13:102–109 CrossRefGoogle Scholar
  25. 25.
    Delpech M, Coutinho F, Habibe M (2002) Bisphenol A-based polycarbonates: characterization of commercial samples. Polym Test 21:155–161CrossRefGoogle Scholar
  26. 26.
    Jang L, Lee D (2000) Polystyrene/bisphenol A polycarbonate molecular composite by in situ polymerization. I. Preparation and characterization. Polymer 4:1749–1756CrossRefGoogle Scholar
  27. 27.
    Islam MM, Seo D-W, Jang H-H, Lim Y-D, Shin KM, Kim WG (2011) Synthesis and characterization of branched bisphenol-A polycarbonates functionalized with Siloxane. Macromol Res 19:1278–1286CrossRefGoogle Scholar
  28. 28.
    Billmeyer F (1975) Ciencia de los polímeros. Editorial Reverté, BarcelonaGoogle Scholar
  29. 29.
    Yoon Y, Westerhoff P, Snyder S, Esparza M (2003) HPLC-fluorescence detection and adsorption of bisphenol A, 17β-estradiol, and 17α-ethynyl estradiol on powdered activated carbon. Water Res 37:3530–3537CrossRefGoogle Scholar
  30. 30.
    Silverstein R, Webster F, Kiemle D (2005) Spectrometric identification of organic compounds. Wiley, New YorkGoogle Scholar
  31. 31.
    Poustková I, Dobiás J, Steiner I, Poustka J, Voldrich M (2004) Stability of bisphenol A diglycidyl ether and bisphenol F diglycidyl ether in water-based food simulants. Eur Food Res Technol 219:534–539CrossRefGoogle Scholar
  32. 32.
    Crosby NT (1981) Food packaging materials: aspects of analysis and migration of contaminants. Applied Science Publishers, LondonGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • A. Torres
    • 1
  • C. Ramirez
    • 1
  • J. Romero
    • 2
  • G. Guerrero
    • 2
  • X. Valenzuela
    • 1
  • A. Guarda
    • 1
  • M. J. Galotto
    • 1
  1. 1.Laboratory of Food Packaging (LABEN), Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Technology FacultyUniversity of Santiago de Chile (USACH)SantiagoChile
  2. 2.Laboratory of Membrane Separation Processes (LABPROSEM), Engineering FacultyUniversity of Santiago de Chile (USACH)SantiagoChile

Personalised recommendations