Skip to main content
Log in

Effect of headspace volume, ascorbic acid and sulphur dioxide on oxidative status and sensory profile of Riesling wine

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

White wine spoilage due to oxidation is a major concern during post-fermentation treatments and bottling. In this study, we explored the effects of different oxygen and free SO2 levels and ascorbic acid addition on the development of white wine. Riesling wine was bottled in 500-mL bottles under screw caps with four different headspace volumes (0, 10, 20 and 30 mL), two levels of free SO2 (45 and 70 mg/L) and with and without ascorbic acid (250 mg/L) addition giving 16 wines for analysis. Cold stored (at 5 °C) control was used as reference for data analysis and sensory evaluation. Dissolved oxygen and the oxygen in headspace were measured in the resulting 17 wines. Free and total SO2 concentrations, ascorbic acid concentration, colour, redox potential and antioxidative capacity were measured regularly in wine samples. After 6 months of storage, the wines were evaluated using descriptive sensory analysis. Both sensory and analytical results showed significant differences among the wines. Intensive wine exposure to oxygen (headspace volume) affected colour, free and total SO2 rate, and the overall sensory quality of wine. Ascorbic acid addition had positive effect on the sensory evaluation of wines and on SO2 levels, whereas combined with large headspace volumes, provoked intensive browning in wine samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

HS:

Headspace volume (mL)

TCO:

Total consumed oxygen (mg/L)

AA:

Ascorbic acid

TEAC:

Trolox equivalent antioxidant capacity

ORP:

Oxidation–reduction potential

UTA:

Untypical ageing

References

  1. Boulton RB, Singleton VL, Bisson LF (1996) Principles and practices of winemaking. Chapman & Hall, New York

    Book  Google Scholar 

  2. Ugliano M, Kwiatkowski M, Vidal S, Capone D, Siebert T, Dieval JB, Aagaard O, Waters EJ (2011) Evolution of 3-mercaptohexanol, hydrogen sulfide, and methyl mercaptan during bottle storage of Sauvignon blanc wines. Effect of glutathione, copper, oxygen exposure, and closure-derived oxygen. J Agric Food Chem 59(6):2564–2572. doi:10.1021/jf1043585

    Article  CAS  Google Scholar 

  3. Marais J, Van Wyk C, Rapp A (1992) Effect of storage time, temperature and region on the levels of 1,1,6-trimethyl-1,2-dihydronapthalene and other volatiles, and on quality of Weisser Riesling wines. S Afr J Enol Viticult 13:33–44

    CAS  Google Scholar 

  4. Escudero A, Cacho J, Ferreira V (2000) Isolation and identification of odorants generated in wine during its oxidation: a gas chromatography–olfactometric study. Eur Food Res Technol 211(2):105–110

    Article  CAS  Google Scholar 

  5. Ferreira V, Jarauta I, López R, Cacho J (2003) Quantitative determination of sotolon, maltol and free furaneol in wine by solid-phase extraction and gas chromatography–ion-trap mass spectrometry. J Chromatogr A 1010(1):95–103. doi:10.1016/s0021-9673(03)00963-4

    Article  CAS  Google Scholar 

  6. Zoecklein BW, Fugelsang KC, Gump BH, Nury FS (1994) Wine analysis and production. Chapman & Hall, New York

    Google Scholar 

  7. Hoenicke K, Borchert O, Grüning K, Simat TJ (2002) “Untypical Aging Off-Flavor” in wine: synthesis of potential degradation compounds of indole-3-acetic acid and Kynurenine and their evaluation as precursors of 2-Aminoacetophenone. J Agric Food Chem 50(15):4303–4309

    Article  CAS  Google Scholar 

  8. Du Toit WJ, Marais J, Pretorius IS, Du Toit M (2006) Oxygen in must and wine: a review. S Afr J Enol Viticult 27(1):76–94

    Google Scholar 

  9. Danilewicz JC (2007) Interaction of sulfur dioxide, polyphenols, and oxygen in a wine-model system: central role of iron and copper. Am J Enol Viticult 58(1):53–60

    CAS  Google Scholar 

  10. Danilewicz JC, Wallbridge PJ (2010) Further Studies on the Mechanism of Interaction of Polyphenols, Oxygen, and Sulfite in Wine. Am J Enol Viticult 61(2):166–175

    CAS  Google Scholar 

  11. Elias RJ, Andersen ML, Skibsted LH, Waterhouse AL (2009) Key factors affecting radical formation in wine studied by spin trapping and EPR spectroscopy. Am J Enol Viticult 60(4):471–476

    CAS  Google Scholar 

  12. Danilewicz JC, Seccombe JT, Whelan J (2008) Mechanism of interaction of polyphenols, oxygen, and sulfur dioxide in model wine and wine. Am J Enol Viticult 59(2):128–136

    CAS  Google Scholar 

  13. Makhotkina O, Kilmartin PA (2009) Uncovering the influence of antioxidants on polyphenol oxidation in wines using an electrochemical method: cyclic voltammetry. J Electroanal Chem 633(1):165–174

    Article  CAS  Google Scholar 

  14. Danilewicz JC (2011) Mechanism of autoxidation of polyphenols and participation of sulfite in wine: key role of iron. Am J Enol Viticult 62(3):319–328. doi:10.5344/ajev.2011.10105

    Article  CAS  Google Scholar 

  15. Vally H, Misso N, Madan V (2009) Clinical effects of sulphite additives. Clin Exp Allergy 39(11):1643–1651

    Article  CAS  Google Scholar 

  16. Vally H, Thompson P (2003) Allergic and asthmatic reactions to alcoholic drinks. Addict Biol 8(1):3–11

    Article  CAS  Google Scholar 

  17. Vally H, Thompson P (2001) Role of sulfite additives in wine induced asthma: single dose and cumulative dose studies. Thorax 56(10):763–769

    Article  CAS  Google Scholar 

  18. Izquierdo-Cañas PM, García-Romero E, Huertas-Nebreda B, Gómez-Alonso S (2012) Colloidal silver complex as an alternative to sulphur dioxide in winemaking. Food Control 23(1):73–81

    Article  Google Scholar 

  19. Santos MC, Nunes C, Saraiva JA, Coimbra MA (2011) Chemical and physical methodologies for the replacement/reduction of sulfur dioxide use during winemaking: review of their potentialities and limitations. Eur Food Res Technol 234(1):1–12. doi:10.1007/s00217-011-1614-6

    Article  Google Scholar 

  20. Sonni F, Cejudo Bastante MJ, Chinnici F, Natali N, Riponi C (2009) Replacement of sulfur dioxide by lysozyme and oenological tannins during fermentation: influence on volatile composition of white wines. J Sci Food Agric 89(4):688–696. doi:10.1002/jsfa.3503

    Article  CAS  Google Scholar 

  21. Roussis I, Oliveira JM, Patrianakou M, Cerdeira A, Drossiadis A (2012) Quality improvement of a white and a red wine with less sulphur dioxide by the addition of a mixture of glutathione, caffeic acid and gallic acid

  22. Bouzanquet Q, Barril C, Clark AC, Dias DA, Scollary GR (2012) A novel glutathione-hydroxycinnamic Acid product generated in oxidative wine conditions. J Agric Food Chem 60(49):12186–12195. doi:10.1021/jf3034072

    Article  CAS  Google Scholar 

  23. Bradshaw MP, Barril C, Clark AC, Prenzler PD, Scollary GR (2011) Ascorbic acid: a review of its chemistry and reactivity in relation to a wine environment. Crit Rev Food Sci Nutr 51(6):479–498

    Article  CAS  Google Scholar 

  24. Danilewicz JC (2003) Review of reaction mechanisms of oxygen and proposed intermediate reduction products in wine: central role of iron and copper. Am J Enol Viticult 54(2):73–85

    CAS  Google Scholar 

  25. Deutsch JC (1998) Ascorbic acid oxidation by hydrogen peroxide. Anal Biochem 255(1):1–7. doi:10.1006/abio.1997.2293

    Article  CAS  Google Scholar 

  26. Es-Safi N-E, Guernevé C, Fulcrand H, Cheynier V, Moutounet M (2000) Xanthylium salts formation involved in wine colour changes. Int J Food Sci Technol 35(1):63–74. doi:10.1046/j.1365-2621.2000.00339.x

    Article  CAS  Google Scholar 

  27. Es-Safi N-E, Cheynier V, Moutounet M (2002) Role of aldehydic derivatives in the condensation of phenolic compounds with emphasis on the sensorial properties of fruit-derived foods. J Agric Food Chem 50(20):5571–5585. doi:10.1021/jf025503y

    Article  CAS  Google Scholar 

  28. Skouroumounis GK, Kwiatkowski M, Francis IL, Oakey H, Capone DL, Peng Z, Duncan B, Sefton MA, Waters EJ (2005) The influence of ascorbic acid on the composition, colour and flavour properties of a Riesling and a wooded Chardonnay wine during five years’ storage. Aust J Grape Wine Res 11(3):355–368

    Article  CAS  Google Scholar 

  29. Bradshaw MP, Cheynier V, Scollary GR, Prenzler PD (2003) Defining the ascorbic acid crossover from anti-oxidant to pro-oxidant in a model wine matrix containing (+)-catechin. J Agric Food Chem 51(14):4126–4132. doi:10.1021/jf034139f

    Article  CAS  Google Scholar 

  30. Clark AC, Pedretti F, Prenzler PD, Scollary GR (2008) Impact of ascorbic acid on the oxidative colouration and associated reactions of a model wine solution containing (+)− catechin, caffeic acid and iron. Aust J Grape Wine Res 14(3):238–249

    CAS  Google Scholar 

  31. Sonni F, Clark AC, Prenzler PD, Riponi C, Scollary GR (2011) Antioxidant action of glutathione and the ascorbic acid/glutathione pair in a model white wine. J Agric Food Chem 59(8):3940–3949. doi:10.1021/jf104575w

    Article  CAS  Google Scholar 

  32. Bradshaw MP, Scollary GR, Prenzler PD (2004) Examination of the sulfur dioxide–ascorbic acid anti-oxidant system in a model white wine matrix. J Sci Food Agric 84(4):318–324. doi:10.1002/jsfa.1652

    Article  CAS  Google Scholar 

  33. Barril C, Clark AC, Scollary GR (2012) Chemistry of ascorbic acid and sulfur dioxide as an antioxidant system relevant to white wine. Anal Chim Acta 732:186–193. doi:10.1016/j.aca.2011.11.011

    Article  CAS  Google Scholar 

  34. Vidal JC, Boulet JC, Moutounet M (2003) Les apports d’oxygène au cours des traitements des vins. Bilan des observations sur site. 2ème partie. Revue française d’oenologie 201:32–38

    CAS  Google Scholar 

  35. Vidal JC, Boulet JC, Moutounet M (2004) Les apports d’oxygène au cours des traitements des vins. Bilan des observations sur site. 3ème partie. Revue française d’oenologie 205:25–33

    CAS  Google Scholar 

  36. Vidal JC, Dufourcq T, Boulet JC, Moutounet M (2001) Les apports d’oxygène au cours des traitements des vins. Bilan des observations sur site, 1ère partie. Revue française d’oenologie 190:24–31

    Google Scholar 

  37. Morozova K (2009) Impact of the oxygen level during post-fermentation treatment and bottling on the quality of wine. Memoire de Fin d’Etudes, Degree of Master of Science MSc (Ecole Superieure d’Agriculture d’Angers, 49007 Angers, France)

  38. Castellari M, Simonato B, Tornielli G, Spinelli P, Ferrarini R (2004) Effects of different enological treatments on dissolved oxygen in wines. Ital J Food Sci 16(3):387–396

    CAS  Google Scholar 

  39. Dimkou E, Ugliano M, Dieval JB, Vidal S, Aagaard O, Rauhut D, Jung R (2011) Impact of headspace oxygen and closure on sulfur dioxide, color, and hydrogen sulfide levels in a Riesling wine. Am J Enol Viticult 62(3):261–269. doi:10.5344/ajev.2011.11006

    Article  Google Scholar 

  40. C.I.E. (1986) Colorimetry, vol 15.2. 2 edn. Commission Internationale de l’Eclairage, Wien

  41. Pour Nikfardjam MS (2001) Polyphenole in Weißweinen und Traubensäften und ihre Veränderung im Verlauf der Herstellung. Universitätsbibliothek Giessen

  42. Godden P, Lattey K, Francis L, Gishen M, Cowey G, Holdstock M, Robinson E, Waters E, Skouroumounis G, Sefton M (2005) Towards offering wine to the consumer in optimal condition—the wine, the closures and other packaging variables. A review of AWRI research examining the changes that occur in wine after bottling. Wine Ind J 20:20–30

    Google Scholar 

  43. Kwiatkowski MJ, Skouroumounis GK, Lattey KA, Waters EJ (2007) The impact of closures, including screw cap with three different headspace volumes, on the composition, colour and sensory properties of a Cabernet Sauvignon wine during two years’ storage. Aust J Grape Wine Res 13(2):81–94

    Article  CAS  Google Scholar 

  44. Lopes P, Silva MA, Pons A, Tominaga T, Lavigne V, Saucier C, Darriet P, Teissedre PL, Dubourdieu D (2009) Impact of oxygen dissolved at bottling and transmitted through closures on the composition and sensory properties of a Sauvignon Blanc wine during bottle storage. J Agric Food Chem 57(21):10261–10270. doi:10.1021/jf9023257

    Article  CAS  Google Scholar 

  45. Boulton RB, Singleton VL, Bisson LF (1998) Principles and practices of winemaking. Springer, Berlin

    Google Scholar 

  46. Wallington N, Clark AC, Prenzler PD, Barril C, Scollary GR (2013) The decay of ascorbic acid in a model wine system at low oxygen concentration. Food Chem. doi:10.1016/j.foodchem.2013.05.024

    Google Scholar 

  47. Peng Z, Duncan B, Pocock KF, Sefton MA (1998) The effect of ascorbic acid on oxidative browning of white wines and model wines. Aust J Grape Wine Res 4(3):127–135. doi:10.1111/j.1755-0238.1998.tb00141.x

    Article  CAS  Google Scholar 

  48. Chinnici F, Sonni F, Natali N, Riponi C (2013) Oxidative evolution of (+)-catechin in model white wine solutions containing sulfur dioxide, ascorbic acid or gallotannins. Food Res Int 51(1):59–65. doi:10.1016/j.foodres.2012.11.013

    Article  CAS  Google Scholar 

  49. Tomlinson JW, Kilmartin PA (1997) Measurement of the redox potential of wine. J Appl Electrochem 27(10):1125–1134. doi:10.1023/a:1018407230924

    Article  CAS  Google Scholar 

  50. Nojeim SL, Clydesdale FM, Zajick OT (1985) Effect of redox potential on iron valence in model systems and foods. J Food Sci 45:1265–1268

    Google Scholar 

  51. Danilewicz JC (2011) Review of Oxidative Processes in Wine and Value of Reduction Potentials in Enology. Am J Enol Viticult. doi:10.5344/ajev.2011.11046

    Google Scholar 

  52. Türke A, Fischer WJ, Beaumont N, Kilmartin PA (2012) Electrochemistry of sulfur dioxide, polyphenols and ascorbic acid at poly(3,4-ethylenedioxythiophene) modified electrodes. Electrochim Acta 60:184–192. doi:10.1016/j.electacta.2011.11.040

    Article  Google Scholar 

  53. Simonetti P, Pietta P, Testolin G (1997) Polyphenol content and total antioxidant potential of selected Italian wines. J Agric Food Chem 45(4):1152–1155. doi:10.1021/jf960705d

    Article  CAS  Google Scholar 

  54. De Beer D, Joubert E, Gelderblom WC, Manley M (2003) Antioxidant activity of South African red and white cultivar wines: free radical scavenging. J Agric Food Chem 51(4):902–909. doi:10.1021/jf026011o

    Article  Google Scholar 

  55. Oliveira CM, Ferreira AC, de Pinho PG, Silva AM (2008) New qualitative approach in the characterization of antioxidants in white wines by antioxidant free radical scavenging and NMR techniques. J Agric Food Chem 56(21):10326–10331. doi:10.1021/jf8013662

    Article  CAS  Google Scholar 

  56. Hopfer H, Buffon PA, Ebeler SE, Heymann H (2013) The combined effects of storage temperature and packaging on the sensory, chemical, and physical properties of a Cabernet Sauvignon wine. J Agric Food Chem 61(13):3320–3334. doi:10.1021/jf3051736

    Article  CAS  Google Scholar 

  57. D’Auria M, Emanuele L, Racioppi R (2009) The effect of heat and light on the composition of some volatile compounds in wine. Food Chem 117(1):9–14. doi:10.1016/j.foodchem.2009.03.070

    Article  Google Scholar 

  58. Dias DA, Smith TA, Ghiggino KP, Scollary GR (2012) The role of light, temperature and wine bottle colour on pigment enhancement in white wine. Food Chem 135(4):2934–2941. doi:10.1016/j.foodchem.2012.07.068

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was sponsored by the German Academic Exchange Service (DAAD—Deutsche Akademische Austauschdienst). We gratefully acknowledge the staff of the LVWO Weinsberg for the assistance in realisation of this project.

Conflict of interest

None.

Compliance with Ethics Requirements

This article does not contain any studies with human or animal subjects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ksenia Morozova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morozova, K., Schmidt, O. & Schwack, W. Effect of headspace volume, ascorbic acid and sulphur dioxide on oxidative status and sensory profile of Riesling wine. Eur Food Res Technol 240, 205–221 (2015). https://doi.org/10.1007/s00217-014-2321-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-014-2321-x

Keywords

Navigation