Mineral composition and potential nutritional contribution of 34 genotypes from different summer squash morphotypes

Abstract

Mineral concentrations were determined in fruit of 34 traditional and improved genotypes of Cucurbita pepo. Genotypes belong to two subspecies, the subsp. pepo (classified into zucchini, vegetable marrow and pumpkin morphotypes) and subsp. ovifera (with three varieties: texana, ozarkana and clypeata). Phosphorus, potassium, calcium, magnesium, iron, copper, manganese, zinc and sodium were analyzed, and two distinct patterns of mineral accumulation were found to be evident by cluster analysis. Genotypes in group 1 (zucchini and pumpkin) showed the highest concentrations of total minerals (24,338–62,136 mg kg−1 dry weight) as compared to the genotypes in group 2 (vegetable marrow, var. clypeata, var. texana and var. ozarkana). Some genotypes with significant concentrations for different minerals were identified, with the genotype Cu-2 (traditional zucchini) showing the highest concentrations for K, Ca, Mg, Fe, Mn, Zn and Na (4,615, 315, 300, 4.8, 3.03, 3.83 and 9.4 mg kg−1 dry weight, respectively). The zucchini morphotype was superior to other morphotypes studied in terms of contribution to the recommended dietary allowance of mineral content for both men and women. The mineral content of C. pepo fruit reported provides a valuable material for breeding programs to generate lines with a significant long-term beneficial impact on human health.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Consejería de Agricultura, Pesca y Medio Ambiente de la Junta de Andalucía (2013). http://www.faeca.es/index.php/archivo/documentacion/126-frutas-y-hortalizas/1632-avance-de-la-campana-horticola-de-almeria-2012-2013-fuente-capma.html

  2. 2.

    Paris HS (2008) Summer squash. In: Prohens-Tomás J, Nuez F, Carena MJ (eds) Handbook of plant breeding, vol I. Vegetables I. Springer, New York, pp 351–379

    Google Scholar 

  3. 3.

    Aliu S, Rusinovci I, Fetahu S, Zogaj R (2012) Nutritive and mineral composition in a collection of Cucurbita pepo L. grown in Kosova. Food Nutr Sci 3:634–638

    CAS  Article  Google Scholar 

  4. 4.

    Obrero Á, González-Verdejo CI, Die JV, Gómez P, Del Río-Celestino M, Román B (2013) Carotenogenic gene expression and carotenoid accumulation in three varieties of Cucurbita pepo during fruit development. J Agric Food Chem 61:6393–6403

    CAS  Article  Google Scholar 

  5. 5.

    Rouphael Y, Colla G (2005) Growth, yield, fruit quality and nutrient uptake of hydroponically cultivated zucchini squash as affected by irrigation systems and growing seasons. Sci Hortic 105:177–195

    Article  Google Scholar 

  6. 6.

    Tamer CE, İncedayi B, Parseker AS, Yonak S, Çopur ÖU (2010) Evaluation of several quality criteria of low calorie pumpkin dessert. Not Bot Horti Agrobot Cluj-Napoca 38:76–80

    CAS  Google Scholar 

  7. 7.

    FAO/WHO (2001) Human vitamin and mineral requirements. Report of a joint FAO/WHO Expert Consultation, Bangkok, Thailand

  8. 8.

    White PJ, Broadley MR (2009) Biofortification of crops with seven mineral elements often lacking in human diets—iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol 182:49–84

    CAS  Article  Google Scholar 

  9. 9.

    Levander OA (1990) Fruit and vegetable contribution to dietary mineral intake in human health and disease. HortScience 25:1486–1488

    Google Scholar 

  10. 10.

    Harichan S, Verma VN (2013) Investigation of nutrient elements in Cucurbita pepo using atomic absorption spectrometry. Int Lett Chem Phys Astron 2:11–17

    Google Scholar 

  11. 11.

    White PJ, Broadley MR (2005) Biofortifying crops with essential mineral elements. Trends Plant Sci 10:586–593

    Article  Google Scholar 

  12. 12.

    Mayer AM (1997) Historical changes in the mineral content of fruits and vegetables. Br Food J 99:207–211

    Article  Google Scholar 

  13. 13.

    Ferriol M, Picó B (2008) Pumpkin and winter squash. In: Prohens-Tomas J, Nuez F, Carena MJ (eds) Handbook of vegetable breeding. Springer, Berlin, pp 317–349

    Google Scholar 

  14. 14.

    Aboul-Nasr MH, Damarany AM, Abdalla MMA (2002) Yield and its components of some summer squash (Cucurbita pepo L.) genotypes. In: Maynard DN (ed) Cucurbitaceae 2002. ASHS Press, Alexandria, pp 88–94

    Google Scholar 

  15. 15.

    Audrey H, Beany AH, Stoffella PJ, Roe N, Picha DH (2002) Production, fruit quality, and nutritional value of spaghetti squash. In: Janick J, Whipkey A (eds) Trends in new crops and new uses. ASHS Press, Alexandria, pp 445–448

    Google Scholar 

  16. 16.

    Kmiecik W, Lisiewska Z (1994) The influence of potassium sorbate addition on the quality of pickled zucchini fruit. Rocz Państw Zakł Hig 45:301–309

    CAS  Google Scholar 

  17. 17.

    Murphy EF, Hepler PR, True RH (1966) An evaluation of the sensory qualities of inbred lines of squash (Cucurbita maxima). Am Soc Horti Sci Proc 89:483–490

    Google Scholar 

  18. 18.

    Harvey WJ, Grant DG, Lammerink JP (1997) Physical and sensory changes during the development and storage of buttercup squash. N Z J Crop Horti Sci 25:341–351

    Article  Google Scholar 

  19. 19.

    Šimič D, Sudar R, Ledencan T, Jamnrovic A, Zdunic Z, Brkic I, Kovacevic V (2009) Genetic variation of bioavailable iron and zinc in grain of a maize population. J Cereal Sci 50:392–397

    Article  Google Scholar 

  20. 20.

    Portale AA (1999) Blood calcium, phosphorus, and magnesium. In: Favus MJ (ed) Primer on the metabolic bone diseases and disorders of mineral metabolism. Lippincott, Williams & Wilkins, Philadelphia, pp 115–118

    Google Scholar 

  21. 21.

    Whitney E, Rolfes SR (1999) Water and the major minerals. In: Whitney E, Rolfes SR (eds) Understanding nutrition, 8th edn. West/Wadsworth, Belmont, pp 366–401

  22. 22.

    Lambert IH, Hoffmann EK, Pedersen SF (2008) Cell volume regulation: physiology and pathophysiology. Acta Physiol 194:255–282

    CAS  Article  Google Scholar 

  23. 23.

    Rude RK, Shils ME (2006) Magnesium. In: Shils ME, Shike M, Ross AC, Caballero B, Cousins RJ (eds) Modern nutrition in health and disease, 10th edn. Lippincott Williams & Wilkins, Baltimore, pp 223–247

    Google Scholar 

  24. 24.

    Guthrie HA (1989) Introductory nutrition, 7th edn. Time Mirror Mosby College Publishers, Boston

    Google Scholar 

  25. 25.

    McDonald A, Edwards RA, Greenhulgh FD, Morgan CA (1995) Animal nutrition. Prentices Hall, London, pp 101–122

    Google Scholar 

  26. 26.

    Harris ED (1983) Copper in human and animal health. In: Rose J (ed) Trace elements in health. Butterworths, London, p 44

    Google Scholar 

  27. 27.

    Payne WJA (1990) An introduction to animal husbandry in the trophics. Longman, Singapore, pp 92–110

    Google Scholar 

  28. 28.

    Ekholm P, Reinivuo H, Mattila P, Pakkala H, Koponen J, Happonen A, Hellström J, Ovaskainen M (2007) Changes in the mineral and trace element contents of cereals, fruits and vegetables in Finland. J Food Compos Anal 20:487–495

    CAS  Article  Google Scholar 

  29. 29.

    Jacobo-Valenzuela N, Zazueta-Morales JJ, Gallegos-Infante JA, Aguilar-Gutiérrez F, Camacho-Hernández IL, Rocha-Guzmán NE, González-Laredo RF (2011) Chemical and physicochemical characterization of winter squash (Cucurbita moschata D.). Not Bot Horti Agrobot Cluj-Napoca 39:34–40

    CAS  Google Scholar 

  30. 30.

    Cuervo M, Abete I, Baladia E, Corbalán M, Manera M, Basulto J et al (2010) Ingestas dietéticas de referencia (IDR) para la población española. Federación Española de Sociedades de Nutrición, Alimentación y Dietética (FESNAD), Ediciones Universidad de Navarra

  31. 31.

    Ezzatti M, Lopez AD, Rodgers Vander HS, Murray CJ (2002) Selected major risk factors and global regional burden of disease. Lancet 360:1347–1360

    Article  Google Scholar 

Download references

Acknowledgments

Financial support was provided by the Spanish Project INIA-RTA2009-00039-000, FEDER and FSE funds. Damián Martínez-Valdivieso has a contract from INIA-IFAPA (Subprograma FPI-INIA), cofinanced by FSE funds (Programa Operativo FSE de Andalucía 2007-2013_” Andalucía se mueve con Europa”). We would also like to thank Nicholas Davies for his help in grammatical revision of the manuscript.

Conflict of interest

None.

Compliance with Ethics Requirements

This article does not contain any studies with human or animal subjects.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mercedes Del Río-Celestino.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Martínez-Valdivieso, D., Gómez, P., Font, R. et al. Mineral composition and potential nutritional contribution of 34 genotypes from different summer squash morphotypes. Eur Food Res Technol 240, 71–81 (2015). https://doi.org/10.1007/s00217-014-2308-7

Download citation

Keywords

  • Cucurbita
  • Minerals
  • Epicarp
  • Mesocarp
  • Potassium
  • Zucchini