Suitability of instrumental analysis for the discrimination between wild-caught and conventionally and organically farmed shrimps


Shrimps, primarily Penaeus monodon and Litopenaeus vannamei, from organic and conventional farms and free-living stocks were purchased from the German market over 1 year. This study examined the applicability of established analytical methods for the confirmation of the correct labelling of shrimp products. After species identification of 77 shrimp products, the proximate composition, carotenoid pattern, fatty acid profile and stable isotopes of carbon and nitrogen in the lipids and/or the defatted dry matter (DDM) were determined. To differentiate between the three types of production (wild, organically farmed or conventionally farmed), parameters alone or in combination, partly derived by multivariate tests, were considered. Stable isotope ratio mass spectrometry allowed the differentiation between organically and conventionally farmed Litopenaeus vannamei using the combination of ∆δ13C and δ15NDDM values. The gas chromatographic analysis of fatty acids also distinguished between organically and conventionally farmed shrimp of this species. The ratio of the free astaxanthin configurational isomers in shrimp flesh, analysed by high-performance liquid chromatography (HPLC), was inadequate for any assignment, because of the apparent ability to alter the structure of the ingested carotenoids. Thus, a general differentiation of the three production types, irrespective of individual species, could not be achieved by any single method.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  1. 1.

    Klinkhardt M (2006) Garnelen: Weltweit begehrt und wirtschaftlich bedeutend. Fachpresse Verlag Hamburg

  2. 2.

    FAO Fishery Statistic (2012) Accessed 3.2.2014

  3. 3.

    Klinkhardt M (2011) Technologische Fortschritte stabilisieren Aquakulturproduktion. FischMagazin Issue 3:46–51

    Google Scholar 

  4. 4.

    Klinkhardt M (2011b) Top ten der Krustentierarten. Aquakultur Jahrbuch (2010/2011): 128–144

  5. 5.

    Klinkhardt M (2013) White Shrimp: die meistgekaufte Garnele der Welt. FischMagazin Issue 10:58–61

    Google Scholar 

  6. 6.

    FAO, NACA, UNEP, WB, WWF (2006) International principles for responsible shrimp farming. Network of Aquaculture Centres in Asia-Pacific (NACA), Bangkok, Thailand

  7. 7.

    Le TX, Munekage Y, Kato S-I (2005) Antibiotic resistance in bacteria from shrimp farming in mangrove areas. Sci Total Environ 349:95–105

    CAS  Article  Google Scholar 

  8. 8.

    Páez-Osuna F (2001) The environmental impact of shrimp aquaculture: causes, effects, and mitigating alternatives. Environ Manag 28:131–140

    Article  Google Scholar 

  9. 9.

    GIZ (2013) Oceans and coasts. Accessed 24.2.2014

  10. 10.

    Commission Regulation (EC) No 710/2009 amending Regulation (EC) No 889/2008 laying down detailed rules for the implementation of Council Regulation (EC) No 834/2007, as regards laying down detailed rules on organic aquaculture animal and seaweed production

  11. 11.

    Naturland (2011) Accessed 3.2.2014

  12. 12.

    IFOAM (2010) Organic aquaculture. Accessed 5.12.2013

  13. 13.

    FAO Feed formulation (2013) Accessed 5.12.2013

  14. 14.

    Naturland (5/2013) Naturland standards for organic aquaculture. Accessed 3.2.2014

  15. 15.

    Browdy C, Seaborn G, Atwood H, Davis DA, Bullis RA, Samocha TM, Wirth E, Leffler JW (2006) Comparison of pond production efficiency, fatty acid profiles, and contaminants in Litopenaeus vannamei fed organic plant-based and fish-meal-based diets. J World Aqua Soc 37:437–451

    Article  Google Scholar 

  16. 16.

    Ouraji H, Fereidoni AE, Shayegan M, Asil SM (2011) Comparison of fatty acid composition between farmed and wild Indian White shrimps, Fenneropenaeus indicus. Food Nutr Sci 2:824–829

    CAS  Article  Google Scholar 

  17. 17.

    Moreno-Rojas JM, Tulli F, Messina M, Tibaldi E, Guillou C (2008) Stable isotope ratio analysis as a tool to discriminate between rainbow trout (O. mykiss) fed diets based on plant or fish-meal proteins. Rapid Commun Mass Spectrom 22:3706–3710

    CAS  Article  Google Scholar 

  18. 18.

    Aursand M, Mabon F, Martin G (2000) Characterization of farmed and wild salmon (Salmo salar) by a combined use of compositional and isotopic analyses. J Am Oil Chem Soc 77:659–666

    CAS  Article  Google Scholar 

  19. 19.

    Dempson JB, Power M (2004) Use of stable isotopes to distinguish farmed from wild Atlantic salmon, Salmo salar. Ecol Freshw Fish 13:176–184

    Article  Google Scholar 

  20. 20.

    Kennedy BP, Chamberlain CP, Blum JD, Nislow KH, Folt CL (2005) Comparing naturally occurring stable isotopes of nitrogen, carbon, and strontium as markers for the rearing locations of Atlantic salmon (Salmo salar). Can J Fish Aquat Sci 62:48–57

    CAS  Article  Google Scholar 

  21. 21.

    Moreno-Rojas JM, Serra F, Giani I, Moretti VM, Reniero F, Guillou C (2007) The use of stable isotope ratio analyses to discriminate wild and farmed gilthead sea bream (Sparus aurata). Rapid Commun Mass Spectrom 21:207–211

    Article  Google Scholar 

  22. 22.

    Morrison DJ, Preston T, Bron JE, Hemderson RJ, Cooper K, Strachan F, Bell JG (2007) Authenticating production origin of gilthead sea bream (Sparus aurata) by chemical and isotopic fingerprinting. Lipids 42:537–545

    CAS  Article  Google Scholar 

  23. 23.

    Molkentin J, Meisel H, Lehmann I, Rehbein H (2007) Identification of organically farmed Atlantic salmon by analysis of stable isotopes and fatty acids. Eur Food Res Technol 224:535–543

    CAS  Article  Google Scholar 

  24. 24.

    Thomas F, Jamin E, Wietzerbin K, Guérin R, Lees M, Morvan E, Billault I, Derrien S, Moreno-Rojas JM, Serra F, Guillou C, Aursand M, McEvoy L, Prael A, Robins RJ (2008) Determination of origin of Atlantic salmon Salmo salar: The use of multiprobe and multielement isotopic analyses in combination with fatty acid composition to assess wild or farmed origin. J Agric Food Chem 56:989–997

    CAS  Article  Google Scholar 

  25. 25.

    Serrano R, Blanes MA, Orero L (2007) Stable isotope determination in wild and farmed gilthead sea bream (Sparus aurata) tissues from the western Mediterranean. Chemosphere 69:1075–1080

    CAS  Article  Google Scholar 

  26. 26.

    Schröder V, Garcia de Leaniz C (2011) Discrimination between farmed and free-living invasive salmonids in Chilean Patagonia using stable isotope analysis. Biol Invasions 13:203–213

    Article  Google Scholar 

  27. 27.

    Shahidi F, Metusalach, Brown JA (1998) Carotenoid pigments in seafood and aquaculture. Crit Rev Food Sci Nutr 38:1–67

  28. 28.

    Schiedt K, Bischof S, Glinz E (1993) In: Packer L (ed) Methods in enzymology carotenoids part B: Metabolism. Genet Biosynthesis 214:148–168

  29. 29.

    Boonyaratpalin M, Thongrod S, Supamattaya K, Britton G, Schlipalius LE (2001) Effects of β-carotene source, Dunaliella salina, and astaxanthin on pigmentation, growth, survival and health of Penaeus monodon. Aqua Res 32(Suppl 1):182–190

    CAS  Article  Google Scholar 

  30. 30.

    Latscha T (1989) The role of astaxanthin in shrimp pigmentation. Advances in Tropical Aquaculture. Aquacop Ifremer Actes de Colloque 9:319–325

    Google Scholar 

  31. 31.

    Yanar Y, Celik M, Yanar M (2004) Seasonal changes in total carotenoid contents of wild marine shrimps (Penaeus semisulcatus and Metapenaeus monoceros) inhabiting the eastern Mediterranean. Food Chem 88:267–269

    CAS  Article  Google Scholar 

  32. 32.

    Foss P, Renstrøm B, Liaaen-Jensen S (1987) Natural occurrence of enantiomeric and meso astaxanthin 7*-crustaceans including zooplankton. Comp Biochem Physiol 86B:313–314

    CAS  Google Scholar 

  33. 33.

    Bjerkeng B (1997) Chromatographic analysis of synthesized astaxanthin: a handy tool for the ecologist and the forensic chemist? Progress Fish-Culturist 59:129–140

    Article  Google Scholar 

  34. 34.

    Regulation (EC) No 1831/2003 of the European Parliament and of the Council of 22 September 2003 on additives for use in animal nutrition

  35. 35.

    SOIL (10/2013) SOIL Association organic standards aquaculture. Accessed 3.2.2014

  36. 36.

    Schiedt K, Bischof S, Glinz E (1991) Recent progress on carotenoid metabolism in animals. Pure Appl Chem 63:89–100

    CAS  Article  Google Scholar 

  37. 37.

    Miller EL, Bimbo AP, Barlow SM, Sheridan B (2007) Repeatability and reproducibility of determination of the nitrogen content of fishmeal by the combustion (Dumas) method and comparison with the Kjeldahl method: interlaboratory study. J AOAC Int 90:6–20

    CAS  Google Scholar 

  38. 38.

    AOAC (2005) Method #968.06 Official methods of analysis of AOAC International. 18th Edition, chapter 4, p. 25. Gaithersburg: AOAC International

  39. 39.

    Karl H, Bekaert K, Berge J-P, Cadun A, Duflos G, Oehlenschläger J, Poli BM, Tejada M, Testi S, Timm-Heinrich M (2012) WEFTA interlaboratory comparison on total lipid determination in fishery products using the Smedes method. J AOAC Int 95:1–5

    Article  Google Scholar 

  40. 40.

    Schiefenhövel K, Rehbein H (2010) Identification of tropical shrimp species by RFLP and SSCP analysis of mitochondrial genes. Arch Lebensmittelhyg 61:50–56

    Google Scholar 

  41. 41.

    DGF-Einheitsmethode C-VI-11d (1998) Fettsäuremethylester (Alkalische Umesterung). Wissenschaftliche Verlags-GmbH, Stuttgart

  42. 42.

    DGF-Einheitsmethode C-VI-10a (2000) Gaschromatographie: Analyse der Fettsäuren und Fettsäureverteilung. Wissenschaftliche Verlags-GmbH, Stuttgart

  43. 43.

    Smedes F (1999) Determination of total lipid using non-chlorinated solvents. Analyst 124:1711–1718

    CAS  Article  Google Scholar 

  44. 44.

    Ostermeyer U, Schmidt T (2004) Differentiation of wild salmon, conventionally and organically farmed salmon. DLR 100:437–444

    CAS  Google Scholar 

  45. 45.

    SAS Institute Inc. (2009) SAS OnlineDoc® 9.2. Cary, NC

  46. 46.

    Van Ruth S, Villegas B, Akkermans W, Rozijn M, van der Kamp H, Koot A (2010) Prediction of the identity of fats and oils by their fatty acid, triacylglycerol and volatile compositions using PLS-DA. Food Chem 118:948–955

    Article  Google Scholar 

  47. 47.

    Tobias RD. An Introduction to Partial Least Squares Regression, SAS Institute Inc., Cary, NC

Download references


The authors thank Mr. Rainer Kündiger, Mrs. Roswitha Koch, Mrs. Frauke Grönwoldt, Mr. Thomas Schmidt, Mrs. Bärbel Krumbeck and Mrs. Melanie Selk for their assistance in performing the analytical work. This work has been financially supported by the German Federal Ministry of Food, Agriculture and Consumer Protection under the federal programme “Ökologischer Landbau” (project No. 08OE026).

Conflict of interest


Compliance with Ethics Requirements

This article does not contain any studies with human or animal subjects.

Author information



Corresponding author

Correspondence to Ute Ostermeyer.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ostermeyer, U., Molkentin, J., Lehmann, I. et al. Suitability of instrumental analysis for the discrimination between wild-caught and conventionally and organically farmed shrimps. Eur Food Res Technol 239, 1015–1029 (2014).

Download citation


  • Stable isotopes
  • Fatty acids
  • Astaxanthin
  • Species identification
  • Partial least-squares discriminant analysis
  • Organically farmed shrimps