Skip to main content
Log in

Punicalagin exhibits negative regulatory effects on LPS-induced acute lung injury

European Food Research and Technology Aims and scope Submit manuscript

Cite this article

Abstract

Punicalagin, mainly isolated from the fruit of Pomegranate (Punica granatum L.), is a natural polyphenolic compound. In the present study, we investigated the negative regulatory effect of punicalagin on acute lung injury (ALI) induced by Lipopolysaccharide (LPS). In the murine model of ALI, the data showed that punicalagin inhibited the production of TNF-α, IL-1β, and IL-6 and decreased protein concentration and myeloperoxidase activity with a single 4 mg/kg dose of punicalagin prior to the administration of intratracheal LPS in the bronchoalveolar lavage fluid. Furthermore, we investigated the effects of punicalagin how to modulate signal transduction. MAPK and NF-κB activation were measured by Western blot and immunocytochemical analysis. The data showed that punicalagin significantly inhibited phosphorylated p38 MAPK protein expression and shocked p65-NF-κB translocation into the nucleus. These results indicated punicalagin may exert negative regulatory effects on ALI partly through suppressing p38 MAPKs or/and NF-κB pathways. This study offered a novel therapeutic strategy for improving clinical effects of acute lung injury (ALI)/acute respiratory distress syndrome and provided more evidence for the health benefits of pomegranate fruits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Fang X, Bai C, Wang X (2012) Bioinformatics insights into acute lung injury/acute respiratory distress syndrome. Clin Transl Med 1:9

    Article  Google Scholar 

  2. Jeyaseelan S, Chu HW, Young SK, Freeman MW, Worthen GS (2005) Distinct roles of pattern recognition receptors CD14 and toll-like receptor 4 in acute lung injury. Infect Immun 73(3):1754–1763

    Article  CAS  Google Scholar 

  3. Bernard GR, Artigas A, Brigham KL, Carlet J, Falke K, Hudson L, Lamy M, Legall JR, Morris A, Spragg R (1994) The American–European consensus conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med 149:818–824

    Article  CAS  Google Scholar 

  4. Wheeler AP, Bernard GR (2007) Acute lung injury and the acute respiratory distress syndrome: a clinical review. Lancet 369:1553–1564

    Article  Google Scholar 

  5. Peek GJ, Clemens F, Elbourne D, Firmin R, Hardy P, Hibbert C, Killer H, Mugford M, Thalanany M, Tiruvoipati R, Truesdale A, Wilson A (2006) CESAR: conventional ventilatory support vs extracorporeal membrane oxygenation for severe adult respiratory failure. BMC Health Serv Res 6:163

    Article  Google Scholar 

  6. Rubenfeld GD, Caldwell E, Peabody E, Weaver J, Martin DP, Neff M, Stern EJ, Hudson LD (2005) Incidence and outcomes of acute lung injury. N Engl J Med 353:1685–1693

    Article  CAS  Google Scholar 

  7. Herridge MS, Angus DC (2005) Acute lung injury—affecting many lives. N Engl J Med 353:1736–1738

    Article  CAS  Google Scholar 

  8. Brun-Buisson C, Minelli C, Bertolini G, Brazzi L, Pimentel J, Lewandowski K, Bion J, Romand JA, Villar J, Thorsteinsson A, Damas P, Armaganidis A, Lemaire F, ALIVE Study Group (2004) Epidemiology and outcome of acute lung injury in European intensive care units. Results from the ALIVE study. Intensive Care Med 30:51–61

    Article  Google Scholar 

  9. Goss CH, Brower RG, Hudson LD, Rubenfeld GD, ARDS Network (2003) Incidence of acute lung injury in the United States. Crit Care Med 31:1607–1611

    Article  Google Scholar 

  10. Diaz JV, Brower R, Calfee CS, Matthay MA (2010) Therapeutic strategies for severe acute lung injury. Crit Care Med 38:1644–1650

    Article  Google Scholar 

  11. Zhang X, Song Y, Ci X, An N, Fan J, Cui J, Deng X (2008) Effects of florfenicol on early cytokine responses and survival in murine endotoxemia. Int Immunopharmacol 8:982–988

    Article  CAS  Google Scholar 

  12. Tisoncik JR, Korth MJ, Simmons CP, Farrar J, Martin TR, Katze MG (2012) Into the eye of the cytokine storm. Microbiol Mol Biol Rev 76:16–32

    Article  CAS  Google Scholar 

  13. Lin LT, Chen TY, Lin SC, Chung CY, Lin TC, Wang GH, Anderson R, Lin CC, Richardson CD (2013) Broad-spectrum antiviral activity of chebulagic acid and punicalagin against viruses that use glycosaminoglycans for entry. BMC Microbiol 13:187–194

    Article  CAS  Google Scholar 

  14. Yang Y, Xiu J, Zhang L, Qin C, Liu J (2012) Antiviral activity of punicalagin toward human enterovirus 71 in vitro and in vivo. Phytomedicine 20:67–70

    Article  Google Scholar 

  15. Lin LT, Chen TY, Chung CY, Noyce RS, Grindley TB, McCormick C, Lin TC, Wang GH, Lin CC, Richardson CD (2011) Hydrolyzable tannins (chebulagicacid and punicalagin) target viral glycoprotein–glycosaminoglycan interactions to inhibit herpes simplex virus 1 entry and cell-to-cell spread. J Virol 85:4386–4398

    Article  CAS  Google Scholar 

  16. Aqil F, Munagala R, Vadhanam MV, Kausar H, Jeyabalan J, Schultz DJ, Gupta RC (2012) Anti-proliferative activity and protection against oxidative DNA damage by punicalagin isolated from pomegranate husk. Food Res Int 49:345–353

    Article  CAS  Google Scholar 

  17. Lee SI, Kim BS, Kim KS, Lee S, Shin KS, Lim JS (2008) Immune-suppressive activity of punicalagin via inhibition of NFAT activation. Biochem Biophys Res Commun 371:799–803

    Article  CAS  Google Scholar 

  18. Taguri T, Tanaka T, Kouno I (2004) Antimicrobial activity of 10 different plant polyphenols against bacteria causing food-borne disease. Biol Pharm Bull 27:1965–1969

    Article  CAS  Google Scholar 

  19. Chen PS, Li JH (2006) Chemopreventive effect of punicalagin, a novel tannin component isolated from Terminalia catappa, on H-ras-transformed NIH3T3 cells. Toxicol Lett 163:44–53

    Article  CAS  Google Scholar 

  20. Chu X, Ci X, Wei M, Yang X, Cao Q, Guan M, Li H, Deng Y, Feng H, Deng X (2012) Licochalcone a inhibits lipopolysaccharide-induced inflammatory response in vitro and in vivo. J Agric Food Chem 60(15):3947–3954

    Article  CAS  Google Scholar 

  21. Minamino T, Komuro I (2006) Regeneration of the endothelium as a novel therapeutic strategy for acute lung injury. J Clin Invest 116:2316–2319

    Article  CAS  Google Scholar 

  22. Beck BD, Brain JD, Bohannon DE (1982) An in vivo hamster bioassay to assess the toxicity of particulates for the lungs. Toxicol Appl Pharm 66:9–29

    Article  CAS  Google Scholar 

  23. Zhang Y, Zhao Z, Guan L, Mao L, Li S, Guan X, Chen M, Guo L, Ding L, Cong C, Wen T, Zhao J (2014) N-acetyl-heparin attenuates acute lung injury caused by acid aspiration mainly by antagonizing histones in mice. PLoS One 9:e97074

    Article  Google Scholar 

  24. Everhart MB, Han W, Sherrill TP, Arutiunov M, Polosukhin VV, Burke JR, Sadikot RT, Christman JW, Yull FE, Blackwell TS (2006) Duration and intensity of NF-kappaB activity determine the severity of endotoxin-induced acute lung injury. J Immunol 176:4995–5005

    Article  CAS  Google Scholar 

  25. Baeuerle PA, Baltimore D (1996) NF-kappa B: ten years after. Cell 87:13–20

    Article  CAS  Google Scholar 

  26. Hommes DW, Peppelenbosch MP, van Deventer SJ (2003) Mitogen activated protein (MAP) kinase signal transduction pathways and novel anti-inflammatory targets. Gut 52:144–151

    Article  CAS  Google Scholar 

  27. Xagorari A, Roussos C, Papapetropoulos A (2002) Inhibition of LPS-stimulated pathways in macrophages by the flavonoid luteolin. Br J Pharmacol 136:1058–1064

    Article  CAS  Google Scholar 

  28. Kim HJ, Lee HS, Chong YH, Kang JL (2006) P38 Mitogen-activated proteinkinase up-regulates LPS-induced NF-kappaB activation in the development of lung injury and RAW 264.7 macrophages. Toxicology 225:36–47

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Post-doctor Science Fund of China. Number: 801120106201.

Conflict of interest

None.

Compliance with Ethics Requirements

This article does not contain any studies with human or animal subjects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Lu.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guan, S., Wang, Z., Huang, Y. et al. Punicalagin exhibits negative regulatory effects on LPS-induced acute lung injury. Eur Food Res Technol 239, 837–845 (2014). https://doi.org/10.1007/s00217-014-2280-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-014-2280-2

Keywords

Navigation