Skip to main content

Advertisement

Log in

Steady-state kinetics of tryptic hydrolysis of β-lactoglobulin after dynamic high-pressure microfluidization treatment in relation to antigenicity

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Our previous research revealed that dynamic high-pressure microfluidization (DHPM) increased the antigenicity of β-lactoglobulin (β-Lg) below 80 MPa, which was related to the unfolding of protein. To test the hypothesis that the unfolding of protein may change proteolytic susceptibility of β-Lg and modulate its antigenicity during the digestion, we developed that the steady-state kinetics of tryptic hydrolysis of β-Lg subjected to DHPM (0.1–80 MPa) have been investigated in relation to the antigenicity in this study. According to the steady-state kinetics analysis, the improved digestion of β-Lg was accompanied with the obvious decrease of antigenicity during the hydrolysis with pressure increasing, reflected by the increase of k c , the decrease of K m, the increase of overall catalytic efficiency (k c/K m), and the increase of the binding volume. It was indicated that although DHPM can increase the antigenicity of β-Lg, the enhanced digestibility of β-Lg at elevated pressure contributed to a decrease of antigenicity during the hydrolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. de la Hoz L, Netto FM (2008) Structural modifications of beta-lactoglobulin subjected to gamma radiation. Int Dairy J 18:1126–1132

    Article  Google Scholar 

  2. Wal JM (2004) Bovine milk allergenicity. Ann Allergy Asthma Immunol 93(5):S2–S11

    Article  CAS  Google Scholar 

  3. Taylor SL, Lehrer SB (1996) Principles and characteristics of food allergens. Crit Rev Food Sci Nutr 36:S91–S118

    Article  CAS  Google Scholar 

  4. Hernandez-Ledesma B, Ramos M, Recio I, Amigo L (2006) Effect of beta-lactoglobulin hydrolysis with thermolysin under denaturing temperatures on the release of bioactive peptides. J Chromatogr A 1116(1–2):31–37

    Article  CAS  Google Scholar 

  5. Chobert JM, Briand L, Grinberg V, Haertle T (1995) Impact of esterification on the folding and the susceptibility to peptic proteolysis of beta-lactoglobulin. Biochim Biophys Acta Protein Struct Mol Enzymol 1248(2):170–176

    Article  Google Scholar 

  6. Dalgalarrondo M, Dufour E, Chobert JM, Bertrandharb C, Haertle T (1995) Proteolysis of beta-lactoglobulin and beta-casein by pepsin in ethanolic media. Int Dairy J 5(1):1–14

    Article  CAS  Google Scholar 

  7. Bonomi F, Iametti S, Rasmussen P, Frokiaer H, Ferranti P, Addeo F (2002) Proteolysis of bovine beta-lactoglobulin during thermal treatment in subdenaturing conditions highlights some structural features of the temperature-modified protein and yields fragments with low immunoreactivity. Eur J Biochem 269(5):1362–1372

    Article  Google Scholar 

  8. Stapelfeldt H, Skibsted LH (1999) Pressure denaturation and aggregation of beta-lactoglobulin studied by intrinsic fluorescence depolarization, Rayleigh scattering, radiationless energy transfer and hydrophobic fluoroprobing. J Dairy Res 66(4):545–558

    Article  CAS  Google Scholar 

  9. Stapelfeldt H, Petersen PH, Kristiansen KR, Qvist KB, Skibsted LH (1996) Effect of high hydrostatic pressure on the enzymic hydrolysis of beta-lactoglobulin B by trypsin, thermolysin and pepsin. J Dairy Res 63(1):111–118

    Article  CAS  Google Scholar 

  10. Peyron S, Mouecoucou J, Fremont S, Sanchez C, Gontard N (2006) Effects of heat treatment and pectin addition on beta-lactoglobulin allergenicity. J Agric Food Chem 54:5643–5650

    Article  CAS  Google Scholar 

  11. Olsen K, Kristiansen KR, Skibsted LH (2003) Effect of high hydrostatic pressure on the steady-state kinetics of tryptic hydrolysis of beta-lactoglobulin. Food Chem 80:255–260

    Article  CAS  Google Scholar 

  12. Olsen K, Otte J, Skibsted LH (2000) Steady-state kinetics and thermodynamics of the hydrolysis of beta-lactoglobulin by trypsin. J Agric Food Chem 48(8):3086–3089

    Article  CAS  Google Scholar 

  13. Zhong J, Liu C, Liu W, Cai X, Tu Z, Wan J (2011) Effect of dynamic high-pressure microfluidization at different temperatures on the antigenic response of bovine β-lactoglobulin. Eur Food Res Technol 233:95–102

    Article  CAS  Google Scholar 

  14. Zhong JZ, Liu W, Liu CM, Wang QH, Li T, Tu ZC, Luo SJ, Cai XF, Xu YJ (2012) Aggregation and conformational changes of bovine beta-lactoglobulin subjected to dynamic high-pressure microfluidization in relation to antigenicity. J Dairy Sci 95(8):4237–4245

    Article  CAS  Google Scholar 

  15. Zhong JZ, Xu YJ, Liu W, Liu CM, Luo SJ, Tu ZC (2013) Antigenicity and functional properties of beta-lactoglobulin conjugated with fructo-oligosaccharides in relation to conformational changes. J Dairy Sci 96(5):2808–2815

    Article  CAS  Google Scholar 

  16. Olsen K, Kristiansen KR, Skibsted LH (2003) Effect of high hydrostatic pressure on the steady-state kinetics of tryptic hydrolysis of beta-lactoglobulin. Food Chem 80(2):255–260

    Article  CAS  Google Scholar 

  17. Wroblewska B, Karamac M, Amarowicz R, Szymkiewicz A, Troszynska A, Kubicka E (2004) Immunoreactive properties of peptide fractions of cow whey milk proteins after enzymatic hydrolysis. Int J Food Sci Technol 39(8):839–850

    Article  CAS  Google Scholar 

  18. Kleber N, Krause I, Illgner S, Hinrichs J (2004) The antigenic response of beta-lactoglobulin is modulated by thermally induced aggregation. Eur Food Res Technol 219:105–110

    Article  CAS  Google Scholar 

  19. Ren Y, Han Z, Chu X, Zhang J, Cai Z, Wu Y (2010) Simultaneous determination of bovine alpha-lactalbumin and beta-lactoglobulin in infant formulae by ultra-high-performance liquid chromatography-mass spectrometry. Anal Chim Acta 667(1–2):96–102

    Article  CAS  Google Scholar 

  20. Bonomi F, Fiocchi A, Frokiaer H, Gaiaschi A, Iametti S, Poiesi C, Rasmussen P, Restani P, Rovere P (2003) Reduction of immunoreactivity of bovine beta-lactoglobulin upon combined physical and proteolytic treatment. J Dairy Res 70(1):51–59

    Article  CAS  Google Scholar 

  21. Chicon R, Belloque J, Alonso E, Martin-Alvarez PJ, Lopez-Fandino R (2008) Hydrolysis under high hydrostatic pressure as a means to reduce the binding of beta-lactoglobulin to immunoglobulin E from human sera. J Food Prot 71(7):1453–1459

    CAS  Google Scholar 

  22. Chicon R, Lopez-Exposito I, Belloque J, Alonso E, Lopez-Fandino R (2008) Hydrolysis under high hydrostatic pressure as a means to reduce the potential allergenicity of beta-lactoglobulin. J Allergy Clin Immunol 121(2):S249

    Article  Google Scholar 

  23. Chicon R, Lopez-Fandino R, Alonso E, Belloque J (2008) Proteolytic pattern, antigenicity, and serum immunoglobulin e binding of beta-lactoglobulin hydrolysates obtained by pepsin and high-pressure treatments. J Dairy Sci 91(3):928–938

    Article  CAS  Google Scholar 

  24. Dufour E, Herve G, Haertle T (1995) Hydrolysis of beta-lactoglobulin by thermolysin and pepsin under high hydrostatic-pressure. Biopolymers 35(5):475–483

    Article  CAS  Google Scholar 

  25. Bertrand-Harb C, Baday A, Dalgalarrondo M, Chobert JM, Haertle T (2002) Thermal modifications of structure and co-denaturation of alpha-lactalbumin and beta-lactoglobulin induce changes of solubility and susceptibility to proteases. Nahrung Food 46(4):283–289

    Article  CAS  Google Scholar 

  26. Sakurai K, Konuma T, Yagi M, Goto Y (2009) Structural dynamics and folding of beta-lactoglobulin probed by heteronuclear NMR. Biochim Biophys Acta Gen Subj 1790:527–537

    Article  CAS  Google Scholar 

  27. Dewit JN, Klarenbeek G (1984) Effects of various heat-treatments on structure and solubility of whey proteins. J Dairy Sci 67(11):2701–2710

    Article  CAS  Google Scholar 

  28. Moosavi-Movahedi AA, Salami M, Yousefi R, Ehsani MR, Dalgalarrondo M, Chobert JM, Haertle T, Razavi SH, Saboury AA, Niasari-Naslaji A (2008) Kinetic characterization of hydrolysis of camel and bovine milk proteins by pancreatic enzymes. Int Dairy J 18(12):1097–1102

    Article  Google Scholar 

  29. Wal JM (2001) Structure and function of milk allergens. Allergy 56:35–38

    Article  Google Scholar 

  30. Selo I, Negroni L, Creminon C, Yvon M, Peltre G, Wal JM (1998) Allergy to bovine beta-lactoglobulin: specificity of human IgE using cyanogen bromide-derived peptides. Int Arch Allergy Immunol 117(1):20–28

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported financially by the National Natural Science Foundation of China (21366021).

Conflict of interest

None.

Compliance with Ethics Requirements

This article does not contain any studies with human or animal subjects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shunjing Luo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, J., Luo, S., Liu, C. et al. Steady-state kinetics of tryptic hydrolysis of β-lactoglobulin after dynamic high-pressure microfluidization treatment in relation to antigenicity. Eur Food Res Technol 239, 525–531 (2014). https://doi.org/10.1007/s00217-014-2248-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-014-2248-2

Keywords

Navigation