Skip to main content
Log in

Differential transcribed yeast genes involved in flavour formation and its associated amino acid metabolism during brewery fermentation

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

During fermentation, Saccharomyces yeast produces various aroma-active metabolites which determine the different characteristics of aroma and taste in fermented beverages. Amino acid utilisation by yeast during brewer’s wort fermentation is considered to be linked to flavour profile. For a better understanding of the relationship between the biosynthesis of aroma-relevant metabolites and the importance of amino acids, DNA microarrays were carried out on the Saccharomyces cerevisiae strain S81 and the Saccharomyces pastorianus strain S23. Changes in the transcription of those genes were measured which are associated with amino acid assimilation and its derived aroma-active compounds during fermentation. Genes were selected whose average expression level increased or decreased more than 1.5-fold at 8, 12, 24, 48, 72, 96 or 120 h and showed a significant (P ≤ 0.05) differential expression pattern during the period of fermentation. For the ale strain, 57 of the detected genes involved in flavour and amino acid metabolism were selected, whereas 46 significant genes were evaluated for the lager strain. Among these, genes were those involved in transcriptional regulation as well as others associated with amino acid transport, such as PUT4 which is accountable for the uptake of proline. Other genes whose expression decreased or increased during fermentation were evaluated—including those participating in amino acid metabolism, for example glutamate and proline metabolism—as well as enzymes involved in the biosynthesis of aroma-active higher alcohols and esters, which are most important for typical beer flavour. This study provides information that might help to improve the understanding and production of defined concentrations of specific aroma compounds during brewery fermentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

BCAA:

Branched-chain amino acid

CEL:

(RNA signal intensity) files

HS-GC-FID:

Headspace gas chromatography coupled with flame ionisation detection

RMA:

Robust multichip average algorithm

References

  1. Trelea I, Titica M, Corrieu G (2004) Dynamic optimisation of the aroma production in brewing fermentation. J Process Control 14:1–14

    CAS  Google Scholar 

  2. Vanderhaegen B, Neven H, Coghe S, Verstrepen K, Verachtert H, Derdelinckx G (2003) Evolution of chemical and sensory properties during ageing of top-fermented beer. J Agric Food Chem 51:6782–6790

    CAS  Google Scholar 

  3. Engan S (1972) Organoleptic threshold values of some alcohols and esters in beer. J Inst Brew 78:33–36

    CAS  Google Scholar 

  4. Majdak A, Herjavec S, Orlic S, Redzepovic S, Mirosevic N (2002) Comparison of wine aroma compounds produced by Saccharomyces paradoxus and Saccharomyces cerevisiae strains. Food Technol Biotechnol 40:103–109

    CAS  Google Scholar 

  5. Vidrih R, Hribar J (1999) Synthesis of higher alcohols during cider processing. Food Chem 67:287–294

    CAS  Google Scholar 

  6. Inoue Y, Fukuda K, Wakai Y, Sudsai T, Kimura A (1994) Ester formation by a yeast Hansenula mrakii IFO 0895: contribution of esterase for isoamyl acetate production in sake brewing. LWT Food Sci Technol 27:189–193

    CAS  Google Scholar 

  7. Saerens SMG, Verbelen PJ, Vanbeneden N, Thevelein JM, Delvaux FR (2008) Monitoring the influence of high-gravity brewing and fermentation temperature on flavour formation by analysis of gene expression levels in brewing yeast. Appl Microbiol Biotechnol 80:1039–1051

    CAS  Google Scholar 

  8. Torrea D, Fraile P, Grade T, Ancín C (2003) Production of volatile compounds in the fermentation of chardonnay musts inoculated with two strains of Saccharomyces cerevisiae with different nitrogen demands. Food Control 14:565–571

    CAS  Google Scholar 

  9. Hernández-Orte P, Ibarz M, Cacho J, Ferreira V (2006) Addition of amino acids to grape juice of Merlot variety: effect on amino acid uptake and aroma generation during alcoholic fermentation. Food Chem 98:300–310

    Google Scholar 

  10. Quain DE, Duffield ML (1985) A metabolic function for higher alcohol production by yeast. J Inst Brew 91:123

    Google Scholar 

  11. Meilgaard MC (1975) Flavor chemistry of beer: part I: flavor interaction between principal volatiles. MBAA Tech Quart 12:107–117

    CAS  Google Scholar 

  12. Engan S (1970) Wort composition and beer flavour I: the influence of some amino acids on the formation of higher aliphatic alcohols and esters. J Inst Brew 76:254–261

    CAS  Google Scholar 

  13. Äyräpää T (1971) Biosynthetic formation of higher alcohols by yeast. Dependence on the nitrogen nutrient level of the medium. J Inst Brew 77:266–276

    Google Scholar 

  14. Sablayrolles JM, Ball CB (1995) Fermentation kinetics and the production of volatiles during alcoholic fermentation. J Am Soc Brew Chem 53:71–78

    Google Scholar 

  15. Henschke PA, Jiranek V (1993) Yeasts-metabolism of nitrogen compounds. In: Fleet GH (ed) Wine microbiology and biotechnology, 2nd edn. Harwood Academic Publishers, Chur

    Google Scholar 

  16. Jones M, Pierce J (1964) Absorption of amino acids from wort by yeasts. J Inst Brew 70:315–397

    Google Scholar 

  17. Ahmad M, Bussey H (1986) Yeast arginine permease: nucleotide sequence of the CAN1 gene. Curr Genet 10:587–592

    CAS  Google Scholar 

  18. Amitrano AA, Saenz DA, Ramos EH (1997) GAP1 activity is dependent on cAMP in Saccharomyces cerevisiae. FEMS Microbiol Lett 151:131–133

    CAS  Google Scholar 

  19. Garrett J (2008) Amino acid transport through the Saccharomyces cerevisiae Gap1 permease is controlled by the Ras/cAMP pathway. Int J Biochem Cell Biol 40:496–502

    CAS  Google Scholar 

  20. Jauniaux JC, Grenson M (1990) GAP1, the general amino acid permease gene of Saccharomyces cerevisiae. Nucleotide sequence, protein similarity with the other baker´s yeast amino acid permeases, and nitrogen catabolite repression. Eur J Biochem 190:39–44

    CAS  Google Scholar 

  21. Poole K, Walker ME, Warren T, Gardner J, McBryde C, De Lopes Barros M, Jiranek V (2009) Proline transport and stress tolerance of ammonia-insensitive mutants of the PUT4-encoded proline-spcific permease in yeast. J Gen Appl Microbiol 55:427–439

    CAS  Google Scholar 

  22. Regenberg B, Düring-Olsen L, Kielland-Brandt MC, Holmberg S (1999) Substrate specificity and gene expression of the amino-acid permeases in Saccharomyces cerevisiae. Curr Genet 36:317–328

    CAS  Google Scholar 

  23. Chen ECH (1978) The relative contribution of Ehrlich and biosynthetic pathways to the formation of fusel alcohols. J Am Soc Brew Chem 36:39–43

    CAS  Google Scholar 

  24. Eden A, Van Nedervelde L, Drukker M, Benvenisty N, Debourg A (2001) Involvement of branched-chain amino acid aminotransferases in the production of fusel alcohols during fermentation in yeast. Appl Microbiol Biotechnol 55:296–300

    CAS  Google Scholar 

  25. Eden A, Simchen G, Benvenisty N (1996) Two yeast homologs of ECA39, a target for c-Myc regulation, code for cytosolic and mitochondrial branched-chain amino acid aminotransferases. J Biol Chem 271:20242–20245

    CAS  Google Scholar 

  26. Hazelwood AL, Daran JM, Van Maris AJA, Pronk JT, Dickinson JR (2008) The Ehrlich Pathway for fusel alcohol production: a century of research on Saccharomyces cerevisiae metabolism. Appl Environ Microbiol 74:2259–2266

    CAS  Google Scholar 

  27. Dickinson JR, Harrison SJ, Hewlinsi MJE (1998) An investigation of the metabolism of valine to isobutyl alcohol in Saccharomyces cerevisiae. J Biol Chem 273:25751–25756

    CAS  Google Scholar 

  28. Dickinson JR, Lanterman MM, Danner DJ, Pearson BM, Sanz P, Harrison SJ, Hewlins MJE (1997) A 13C nuclear magnetic resonance investigation of the metabolism of leucine to isoamyl alcohol in Saccharomyces cerevisiae. J Biol Chem 272:26871–26878

    CAS  Google Scholar 

  29. Ehrlich F (1907) Über die Bedingungen der Fuselölbildung und über ihren Zusammenhang mit dem Eiweissaufbau der Hefe. Ber Dtsch Chem Ges 40:1027–1047

    CAS  Google Scholar 

  30. Perpète P, Duthoit O, De Mayer S, Imary L, Lawton A, Stavropoulos K, Gitonga V, Hewlins M, Dickinson J (2006) Methionine catabolism in Saccharomyces cerevisiae. FEMS Yeast Res 6:48–56

    Google Scholar 

  31. Bamforth CW (2005) Food, fermentation and micro-organisms. Wiley-Blackwell, New York

    Google Scholar 

  32. Hui YH (2007) Handbook of food products manufacturing. Wiley-Interscience, New York

    Google Scholar 

  33. Malcorps P, Dufour JP (1992) Short-chain and medium chain aliphatic ester synthesis in Saccharomyces cerevisiae. Eur J Biochem 210:1015–1022

    CAS  Google Scholar 

  34. Saerens SMG, Verstrepen KJ, Van Laere SDM, Voet ARD, Van Dijck P, Delvaux FR, Thevelein JM (2006) The Saccharomyces cerevisiae EHT1 and EEB1 genes encode novel enzymes with medium chain fatty acid ethyl ester synthesis and hydrolysis capacity. J Biol Chem 281:4446–4456

    CAS  Google Scholar 

  35. Laposata M (1998) Fatty acid ethyl esters: ethanol metabolites which mediate ethanol-induced organ damage and serve as markers of ethanol intake. Prog Lipid Res 37:307–316

    CAS  Google Scholar 

  36. Verstrepen KJ, Derdelinckx G, Dufour JP, Winderickx J, Thevelein JM, Pretorius IS, Delvaux FR (2003) Flavor-active esters: adding fruitiness to beer. J Biosci Bioeng 96:110–118

    CAS  Google Scholar 

  37. Meilgaard MC (2001) Effects on flavour of innovations in brewery equipment and processing: a review. J Inst Brew 107:271–286

    Google Scholar 

  38. Suomalainen H (1981) Yeast esterases and aroma esters in alcoholic beverages. J Inst Brew 87:296–300

    CAS  Google Scholar 

  39. Verstrepen KJ, Van Laere SDM, Vanderhaegen BMP, Derdelinckx G, Dufour JP, Pretorius IS, Winderickx J, Thevelein JM, Delvaux FR (2003) Expression levels of the yeast alcohol acetyltransferase genes ATF1, Lg-ATF1, and ATF2 control the formation of a broad range of volatile esters. Appl Environ Microbiol 69:5228–5237

    CAS  Google Scholar 

  40. Hernández-Orte P, Ibarz M, Cacho J, Ferreira V (2005) Effect of the addition of ammonium and amino acids to musts of Airen variety on aromatic composition and sensory properties of the obtained wine. Food Chem 89:163–174

    Google Scholar 

  41. Procopio S, Krause D, Hofmann T, Becker T (2013) Significant amino acids in aroma compound profiling during yeast fermentation analyzed by PLS regression. LWT Food Sci Technol 51:423–432

    CAS  Google Scholar 

  42. Liang HY, Chen JY, Reeves M, Han BZ (2013) Aromatic and sensorial profiles of young Cabernet Sauvignon wines fermented by different Chinese autochthonous Saccharomyces cerevisiae strains. Food Res Int 51:855–865

    CAS  Google Scholar 

  43. Yu Z, Zhao M, Li H, Zhao H, Zhang Q, Wan C, Li H (2012) A comparative study on physiological activities of lager and ale brewing yeasts under different gravity conditions. Biotechnol Bioprocess Eng 17:818–826

    CAS  Google Scholar 

  44. Vidgren V, Multanen J, Ruohonen L, Londesbotough J (2010) The temperature dependence of maltose transport in ale and lager strains of brewer’s yeast. FEMS Yeast Res 10:402–411

    CAS  Google Scholar 

  45. Libkind D, Hittinger CT, Valério E, Goncalves C, Dover J, Johnston M, Goncalves P, Sampaio JP (2011) Microbe domestication and the identification of the wild genetic stock of lager-brewing yeast. Proc Natl Acad Sci 108:14539–14544

    CAS  Google Scholar 

  46. Sacher B (2006) Hefecharakterisierung anhand brautechnologischer Verhaltensmuster. Presented at the 3. Weihenstephaner Hefesymposium, Freising-Weihenstephan

    Google Scholar 

  47. Procopio S, Qian F, Becker T (2011) Interaction of nitrogen composition on aroma-active metabolites and flavor profiling. Presented at the 74th annual meeting of the ASBC, Fort Myers, Florida, USA

  48. Krömer JO (2005) OPA amino acids on Gemini C18. Phenomenex application note ID: 15992

  49. Ough CS (1969) Rapid determination of proline in grapes and wines. J Food Sci 34:228–230

    CAS  Google Scholar 

  50. Schönberger C (2004) Bedeutung nicht-flüchtiger Geschmacksstoffe in Bier. Dissertation der Technischen Universität-München, Books on Demand GmbH, Norderstedt

  51. Irizarry R, Hobbs B, Collin F, Beazer-Barclay Y, Antonellis K, Scherf U, Speed T (2003) Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4:249–264

    Google Scholar 

  52. Gibson BR, Boulton CA, Box WG, Graham NS, Lawrence SJ, Linforth RST, Smart KA (2009) Amino acid uptake and yeast gene transcription during industrial brewery fermentation. J Am Soc Brew Chem 67:157–165

    CAS  Google Scholar 

  53. Perpete P, Santos G, Bodart E, Collin S (2005) Uptake of amino acids during beer production. J Am Soc Brew Chem 63:23–27

    CAS  Google Scholar 

  54. Gibson BR, Storgårds E, Krogerus K, Vidgren V (2013) Comparative physiology and fermentation performance of Saaz and Frohberg lager yeast strains and the parental species Saccharomyces eubayanus. Yeast 30:255–266

    CAS  Google Scholar 

  55. Schoondermark-Stolk SA, Jansen M, Verkleij AJ, Verrips CT, Euverink G-JW, Dijkhuizen L, Boonstra J (2006) Genome-wide transcription survey on flavour production in Saccharomyces cerevisiae. World J Microbiol Biotechnol 22:1347–1356

    CAS  Google Scholar 

  56. Procopio S, Qian F, Becker T (2011) Function and regulation of yeast genes involved in higher alcohol and ester metabolism during beverage fermentation. Eur Food Res Technol 233:721–729

    CAS  Google Scholar 

  57. Dewhurts S, Smallman I (1988) A simple laboratory experiment to demonstrate transamination. Biochem Educ 16:97–98

    Google Scholar 

  58. Walker GM (1998) Yeast physiology and biotechnology. Wiley, Chichester

    Google Scholar 

  59. Prusiner S, Stadtman ER (1973) The enzymes of glutamine metabolism. Academic Press, New York and London

    Google Scholar 

  60. Wang SS, Brandriss MC (1987) Proline utilization in Saccharomyces cerevisiae: sequence, regulation, and mitochondrial localization of the PUT1 gene-product. Mol Cell Biol 7:4431–4440

    CAS  Google Scholar 

  61. Ingledew WM, Magnus CA, Sosulski FW (1987) Influence of oxygen on proline utilization during the wine fermentation. Am J Enol Vitticult 38:246–248

    CAS  Google Scholar 

  62. Kaino T, Takagi H (2008) Gene expression profiles and intracellular contents of stress protectants in Saccharomyces cerevisiae under ethanol and sorbitol stresses. Appl Environ Microbiol 79:273–283

    CAS  Google Scholar 

  63. Takagi H, Takaoka M, Kawaguchi A, Kubo Y (2005) Effect of l-proline on sake brewing and ethanol stress in Saccharomyces cerevisiae. Appl Environ Microbiol 71:8656–8662

    CAS  Google Scholar 

  64. Rouillon A, Surdin-Kerjan Y, Thomas D (1999) Transport of sulfonium compounds. Characterization of the s-adenosylmethionine and s-methylmethionine permeases from the yeast Saccharomyces cerevisiae. J Biol Chem 274:28096–28105

    CAS  Google Scholar 

  65. Isnard AD, Thomas D, Surdin-Kerjan Y (1996) The study of methionine uptake in Saccharomyces cerevisiae reveals a new family of amino acid permeases. J Mol Biol 262:473–484

    CAS  Google Scholar 

  66. Schreve JL, Garrett JM (2004) Yeast Agp2p and Agp3p function as amino acid permeases in poor nutrient conditions. Biochem Biophys Res Commun 313:745–751

    CAS  Google Scholar 

  67. Andreasson C, Neve EP, Ljungdahl PO (2004) Four permeases import proline and the toxic proline analouge azetidine-2-carboxylate into yeast. Yeast 21:193–199

    CAS  Google Scholar 

  68. Ter Schure E, Van Riel N, Verrips C (2000) The role of ammonia metabolism in nitrogen catabolite repression in Saccharomyces cerevisiae. FEMS Microbiol Rev 24:67–83

    Google Scholar 

  69. Jauniaux JC, Vandenbol M, Vissers S, Broman K, Grenson M (1987) Nitrogen catabolite regulation of proline permease in Saccharomyces cerevisiae. Eur J Biochem 164:601–606

    CAS  Google Scholar 

  70. Stewart GG, Hill AE, Russell I (2013) 125th anniversary review: developments in brewing and distilling yeast strains. J Inst Brew 119:202–220

    CAS  Google Scholar 

  71. Albertin W, Marullo P (2012) Polyploidy in fungi: evolution after whole-genome duplication. Proc Natl Acad Sci 279:2497–2509

    Google Scholar 

  72. Magasanik B, Kaiser C (2002) Nitrogen regulation in Saccharomyces cerevisiae. Gene 290:1–18

    CAS  Google Scholar 

  73. Benjamin PM, Wu J-I, Mitchell AP, Magasanik B (1989) Three regulatory systems control expression of glutamine synthetase in Saccharomyces cerevisiae at the level of transcription. Mol Gen Genet 217:370–377

    CAS  Google Scholar 

  74. Minehart PL, Magasanik B (1992) Sequence of the GLN1 gene of Saccharomyces cerevisiae: role of the upstream region in regulation of glutamine synthetase expression. J Bacteriol 174:1828–1836

    CAS  Google Scholar 

  75. Hinnebusch A (1992) General and pathway-specific regulatory mechanisms controlling the synthesis of amino acid biosynthetic enzymes in Saccharomyces cerevisiae. In: Jones EW, Pringle JR and Broach JR (eds) The molecular and cellular biology of the yeast saccharomyces: gene expression. Cold Spring Harbor, NY, USA

  76. Maragoudakis M, Holmes H, Strassman M (1967) Control of lysine biosynthesis in yeast by a feedback mechanism. J Bacteriol 93:1677–1680

    CAS  Google Scholar 

  77. Tucci A, Ceci L (1972) Homocitrate synthase from yeast. Arch Biochem Biophys 153:742–750

    CAS  Google Scholar 

  78. El Alami M, Feller A, Piérard A, Dubois E (2000) Characterisation of a tripartite nuclear localisation sequence in the regulatory protein Lys14 of Saccharomyces cerevisiae. Curr Genet 38:78–86

    Google Scholar 

  79. Holmberg S, Litske Petersen JG (1988) Regulation of isoleucine-valine biosynthesis in Saccharomyces cerevisiae. Curr Genet 13:207–217

    CAS  Google Scholar 

  80. Velasco JA, Cansado J, Pefia MC, Kawakami T, Laborda J, Notario V (1993) Cloning of the dihydroxyacid dehydratase-encoding gene (ILV3) from Saccharomyces cerevisiae. Gene 137:179–185

    CAS  Google Scholar 

  81. Forlani N, Martegani E, Alberghina L (1991) Posttranscriptional regulation of the expression of MET2 gene of Saccharomyces cerevisiae. Biochim Biophys Acta 1089:47–53

    CAS  Google Scholar 

  82. Hansen J, Kielland-Brandt MC (1996) Inactivation of MET2 in brewer’s yeast increases the level of sulfite in beer. J Biotechnol 50:75–87

    CAS  Google Scholar 

  83. Jones EW, Fink GR (1982) Regulation of amino acid and nucleotide biosynthesis in yeast. In: Strathern, JN, Jones, EW, Broach, JR (eds) The molecular biology of the yeast Saccharomyces cerevisiae: metabolism and gene expression. Cold Spring Harbor, New York

  84. Baroni M, Livian S, Martegani E, Alberghina L (1986) Molecular cloning and regulation of the expression of the MET2 gene of Saccharomyces cerevisiae. Gene 46:71–78

    CAS  Google Scholar 

  85. Avendano A, Deluna A, Olivera H, Valenzuela L, Gonzalez A (1997) GDH3 encodes a glutamate dehydrogenase isozyme, a previously unrecognized route for glutamate biosynthesis in Saccharomyces cerevisiae. J Bacteriol 179:5594–5597

    CAS  Google Scholar 

  86. Avendano A, Riego L, Deluna A, Aranda C, Romero G, Ishida C, Vazquez-Acevedo M, Rodarte B, Recillas-Targa F, Valenzuela L, Zonszein S, Gonzalez A (2005) Swi/SNF-GCN5-dependent chromatin remodelling determines induced expression of GDH3, one of the paralogous genes responsible for ammonium assimilation and glutamate biosynthesis in Saccharomyces cerevisiae. Mol Microbiol 57:291–305

    CAS  Google Scholar 

  87. Xu S, Falvey DA, Brandriss MC (1995) Roles of URE2 and GLN3 in the proline utilization pathway in Saccharomyces cerevisiae. Mol Biol Cell 15:2321–2330

    CAS  Google Scholar 

  88. Takagi H (2008) Proline as a stress protectant in yeast: physiological functions, metabolic regulations, and biotechnological applications. Appl Microbiol Biotechnol 81:211–223

    CAS  Google Scholar 

  89. Ljungdahl PO, Daignan-Fornier B (2012) Regulation of amino acid, nucleotide, and phosphate metabolism in Saccharomyces cerevisiae. Genetics 190:885–929

    CAS  Google Scholar 

  90. Iraqui I, Vissers S, Cartiaux M, Urrestarazu A (1998) Characterisation of Saccharomyces cerevisiae ARO8 and ARO9 genes encoding aromatic aminotransferases I and II reveals a new aminotransferase subfamily. Mol Genet Genomics 257:238–248

    CAS  Google Scholar 

  91. Dickinson JR, Salgado LE, Hewlins MJ (2003) The catabolism of amino acids to long chain and complex alcohols in Saccharomyces cerevisiae. J Biol Chem 278:8028–8034

    CAS  Google Scholar 

  92. Vuralhan Z, Luttik MA, Tai SL, Boer VM, Morais MA, Schipper D, Almering MJ, Kotter P, Dickinson JR, Daran JM, Pronk JT (2005) Physiological characterization of the ARO10-dependent, broad-substrate-specificity 2-oxo acid decarboxylase activity of Saccharomyces cerevisiae. Appl Environ Biol 71:3276–3284

    CAS  Google Scholar 

  93. Hohmann S (1991) Characterization of PDC6, a third structural gene for pyruvate decarboxylase in Saccharomyces cerevisiae. J Bacteriol 173:7963–7969

    CAS  Google Scholar 

  94. Hohmann S, Cederberg H (1990) Autoregulation may control the expression of yeast pyruvate decarboxylase structural genes PDC1 and PDC5. Eur J Biochem 188:615–621

    CAS  Google Scholar 

  95. Vidal EE, de Billerbeck GM, Simoes DA, Schuler A, Francois JM, de Morais MA Jr (2013) Influence of nitrogen supply on the production of higher alcohols/esters and expression of flavour-related genes in cachaca fermentations. Food Chem 138:701–708

    CAS  Google Scholar 

  96. Romagnoli G, Luttik MAH, Kötter P, Pronk JT, Daran JM (2012) Substrate specificity of thiamine-pyrophosphate-dependent 2-oxo-acid decarboxylases in Saccharomyces cerevisiae. Appl Environ Microbiol 78:7538–7548

    CAS  Google Scholar 

  97. Arevalo-Rodriguez M, Pan X, Boecke JD, Heitman J (2004) FKBP12 controls aspartate pathway flux in Saccharomyces cerevisiae to prevent toxic intermediate accumulation. Eukaryot Cell 3:1287–1296

    CAS  Google Scholar 

  98. Styger G, Jacobson D, Bauer F (2011) Identifying genes that impact on aroma profiles produced by Saccharomyces cerevisiae and the production of higher alcohols. Appl Microbiol Biotechnol 91:713–730

    CAS  Google Scholar 

  99. Styger G, Jacobson D, Prior BA (2013) Genetic analysis of the metabolic pathways responsible for aroma metabolite production by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 97:4429–4442

    CAS  Google Scholar 

  100. Fujii T, Nagasawa N, Iwamatsu A, Bogaki T, Tamai Y, Hamachi M (1994) Molecular cloning, sequence analysis and expression of the yeast alcohol acetyltransferase gene. Appl Environ Biol 60:2786–2792

    CAS  Google Scholar 

  101. Yoshioka K, Hashimoto H (1981) Ester formation by alcohol acetyltransferase from brewers’ yeast. Agric Biol Chem 45:2183–2190

    CAS  Google Scholar 

  102. Lilly M, Lambrechts MG, Pretorius IS (2000) Effect of increased yeast alcohol acetyltransferase activity on flavor profiles of wine and distillates. Appl Environ Microbiol 66:744–753

    CAS  Google Scholar 

  103. Saerens SMG, Delvaux F, Verstrepen KJ, Van Dijck P, Thevelein JM, Delvaux FR (2008) Parameters affecting ethyl ester production by Saccharomyces cerevisiae during fermentation. Appl Environ Biol 74:454–461

    CAS  Google Scholar 

  104. Saerens SMG, Delvaux FR, Verstrepen KJ, Thevelein JM (2010) Production and biological function of volatile esters in Saccharomyces cerevisiae. Microb Biotechnol 3:165–177

    CAS  Google Scholar 

  105. Andorrà I, Berradre M, Esteve-Zarzoso B, Guillamón JM (2012) Effect of mixed culture fermentations on yeast populations and aroma profile. LWT Food Sci Technol 49:8–13

    Google Scholar 

  106. Higgins VJ, Beckhouse AG, Oliver AD, Rogers PJ, Dawes IW (2003) Yeast genome-wide expression analysis identifies a strong ergosterol and oxidative stress response during the initial stages of an industrial lager fermentation. Appl Environ Biol 69:4777–4787106

    CAS  Google Scholar 

  107. Meilgaard MC (1975) Flavor chemistry of beer: part II: flavor and threshold of 239 aroma volatiles. MBAA Techn Quart 12:151–168

    CAS  Google Scholar 

  108. Krüger E, Anger HM (1990) Kennzahlen zur Betriebskontrolle und Qualitätsbeschreibung in der Brauwirtschaft. Behr’s Verlag GmbH & Co, Hamburg

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Prof. Dr. Daniel and Dr. Spanier for supplying the Microarray Scanner. We would also like to thank Dr. Geilinger for her excellent help with programming R. This work was supported by the DFG (Deutsche Forschungs Gemeinschaft) in cooperation with Prof. Dr. Thomas Hofmann.

Conflict of interest

None.

Compliance with Ethics Requirements

This article does not contain any studies with human or animal subjects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanne Procopio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Procopio, S., Brunner, M. & Becker, T. Differential transcribed yeast genes involved in flavour formation and its associated amino acid metabolism during brewery fermentation. Eur Food Res Technol 239, 421–439 (2014). https://doi.org/10.1007/s00217-014-2236-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-014-2236-6

Keywords

Navigation