Skip to main content

Advertisement

Log in

Microbial population dynamics during spontaneous fermentation of Asparagus officinalis L. young sprouts

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

The aim of the present study was to assess the spontaneous fermentation of Asparagus officinalis L. young sprouts. For this purpose, asparagus fermentation was performed according to a traditional procedure originating from northern Greece. Young asparagus sprouts were cut, submerged in a brine solution (8 % NaCl) and placed in room temperature for fermentation to occur. Fermentation was monitored by measuring pH and total titratable acidity values as well as by qualitative and quantitative assessment of the microbiota dynamics. The latter was performed by classical microbiological techniques; clustering was performed by SDS-PAGE of whole cell proteins and rep-PCR and identification by sequencing of the 16S-rRNA gene. A culture-independent approach [PCR-denaturing gradient gel electrophoresis (DGGE)] was also applied in order to obtain a more integrated view of the microbiota dynamics. Lactic acid bacteria prevailed the fermentation forming a microbial consortium that was stable at species level; Lactobacillus sakei and Enterococcus faecium dominated until the 5th day while Weissella viridescens and W. cibaria dominated from the 7th day until the end of fermentation. Combination of SDS-PAGE with rep-PCR resulted in a very efficient clustering and differentiation also at sub-species level, revealing a succession at that level of all species throughout fermentation. On the other hand, application of PCR-DGGE was of limited usefulness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Drosinos EH, Paramithiotis S (2007) Trends in lactic acid fermentation. In: Palino MV (ed) Food microbiology research trends. Nova Publishers, Hauppauge, pp 39–92

    Google Scholar 

  2. Paramithiotis S, Kouretas K, Drosinos EH (2014) Effect of ripening stage on the development of the microbial community during spontaneous fermentation of green tomatoes. J Sci Food Agric. doi:10.1002/jsfa.6464

    Google Scholar 

  3. Pulido RP, Ben Omar N, Abriouel H, Lopez RL, Martinez Canamero M, Galvez A (2005) Microbiological study of lactic acid fermentation of caper berries by molecular and culture-dependent methods. Appl Environ Microbiol 71:7872–7879

    Article  Google Scholar 

  4. Paramithiotis S, Hondrodimou OL, Drosinos EH (2010) Development of the microbial community during spontaneous cauliflower fermentation. Food Res Int 43:1098–1103

    Article  CAS  Google Scholar 

  5. Sanchez I, Palop L, Ballesteros C (2000) Biochemical characterization of lactic acid bacteria isolated from spontaneous fermentation of ‘Almagro’ eggplants. Int J Food Microbiol 59:9–17

    Article  CAS  Google Scholar 

  6. Wouters D, Bernaert N, Conjaerts W, Van Droogenbroeck B, De Loose M, De Vuyst L (2013) Species diversity, community dynamics, and metabolite kinetics of spontaneous leek fermentations. Food Microbiol 33:185–196

    Article  CAS  Google Scholar 

  7. Maifreni M, Marino M, Conte L (2004) Lactic acid fermentation of Brassica rapa: chemical and microbial evaluation of a typical Italian product (brovada). Eur Food Res Technol 218:469–473

    Article  CAS  Google Scholar 

  8. Hong Y, Yang HS, Li J, Han SK, Chang HC, Kim HY (2014) Identification of lactic acid bacteria in salted Chinese cabbage by SDS-PAGE and PCR-DGGE. Sci Food Agric 94:296–300

    Article  CAS  Google Scholar 

  9. Juste A, Malfliet S, Waud M, Crauwels S, De Cooman L, Aerts G, Marsh TL, Ruyters S, Willems K, Busschaert P, Lievens B (2014) Bacterial community dynamics during industrial malting, with an emphasis on lactic acid bacteria. Food Microbiol 39:39–46

    Article  CAS  Google Scholar 

  10. Di Giacomo M, Paolino M, Silvestro D, Vigliotta G, Imperi F, Visca P, Alifano P, Parente D (2007) Microbial community structure and dynamics of dark fire-cured tobacco fermentation. Appl Environ Microbiol 73:825–837

    Article  Google Scholar 

  11. Cocolin L, Manzano M, Cantoni C, Comi G (2001) Denaturing gradient gel electrophoresis analysis of the 16S rRNA gene V1 region to monitor dynamic changes in the bacterial population during fermentation of Italian sausages. Appl Environ Microbiol 67:5113–5121

    Article  CAS  Google Scholar 

  12. Cocolin L, Rantsiou K, Iacumin L, Urso R, Cantoni C, Comi G (2004) Study of the ecology of fresh sausages and characterization of populations of lactic acid bacteria by molecular methods. Appl Environ Microbiol 70:1883–1894

    Article  CAS  Google Scholar 

  13. Ercolini D, Russo F, Torrieri E, Masi P, Villani F (2006) Changes in the spoilage related microbiota of beef during refrigerated storage under different packaging conditions. Appl Environ Microbiol 72:4663–4671

    Article  CAS  Google Scholar 

  14. Ercolini D, Russo F, Nasi A, Ferranti P, Villani F (2009) Mesophilic and psychrotrophic bacteria from meat and their spoilage potential in vitro and in beef. Appl Environ Microbiol 75:1990–2001

    Article  CAS  Google Scholar 

  15. Amaro-Lopez MA, Zurera-Cosano G, Moreno-Rojas R (1999) Nutritional evaluation of mineral content changes in fresh green asparagus as a function of the spear portions. J Sci Food Agric 79:900–906

    Article  CAS  Google Scholar 

  16. Pellegrini N, Serafini M, Colombi B, Rio D, del Salvatore S, Bianchi M, Brighenti F (2003) Total antioxidant capacity of plant foods, beverages and oils consumed in Italy assessed by three different in vitro assays. J Nutr 133:2812–2819

    CAS  Google Scholar 

  17. Jang DS, Cuendet M, Fong HHS, Pezzuto JM, Kinghorn AD (2004) Constituents of Asparagus officinalis evaluated for inhibitory activity against cyclooxygenase-2. J Agric Food Chem 52:2218–2222

    Article  CAS  Google Scholar 

  18. Kim BY, Cui ZG, Lee SR, Kim SJ, Kang HK, Lee YK, Park DB (2009) Effects of Asparagus officinalis extracts on liver cell toxicity and ethanol metabolism. J Food Sci 74:H204–H208

    Article  CAS  Google Scholar 

  19. Paramithiotis S, Mueller MRA, Ehrmann MA, Tsakalidou E, Seiler H, Vogel R, Kalantzopoulos G (2000) Polyphasic identification of wild yeast strains isolated from Greek sourdoughs. Syst Appl Microbiol 23:156–164

    Article  CAS  Google Scholar 

  20. Tamang JP, Tamang B, Schillinger U, Franz CMAP, Gores M, Holzapfel WH (2005) Identification of predominant lactic acid bacteria isolated from traditionally fermented vegetable products of the Eastern Himalayas. Int J Food Microbiol 105:347–356

    Article  CAS  Google Scholar 

  21. Wouters D, Grosu-Tudor S, Zamfir M, De Vuyst L (2013) Bacterial community dynamics, lactic acid bacteria species diversity and metabolite kinetics of traditional Romanian vegetable fermentations. J Sci Food Agric 93:749–760

    Article  CAS  Google Scholar 

  22. Tanasupawat S, Komagata K (1995) Lactic acid bacteria in fermented foods in Thailand. World J Microbiol Biotechnol 11:253–256

    Article  CAS  Google Scholar 

  23. Nielsen DS, Teniola OD, Ban-Koffi L, Owusu M, Andersson TS, Holzapfel WH (2007) The microbiology of Ghanaian cocoa fermentations analysed using culture-dependent and culture-independent methods. Int J Food Microbiol 114:168–186

    Article  CAS  Google Scholar 

  24. De Vuyst L, Schrijvers V, Paramithiotis S, Hoste B, Vancanneyt M, Swings J, Kalantzopoulos G, Tsakalidou E, Messens W (2002) The biodiversity of Lactic Acid Bacteria in Greek traditional wheat sourdough is reflected in both composition and metabolite formation. Appl Environ Microbiol 68:6059–6069

    Article  Google Scholar 

  25. Benito MJ, Serradilla MJ, Ruiz-Moyano S, Alberto A, Pirez-Nevado F, Cordoba MG (2008) Rapid differentiation of lactic acid bacteria from autochthonous fermentation of Iberian dry—fermented sausages. Meat Sci 80:656–661

    Article  CAS  Google Scholar 

  26. Gevers D, Huys G, Swings J (2001) Applicability of rep-PCR fingerprinting for identification of Lactobacillus species. FEMS Microbiol Lett 205:31–36

    Article  CAS  Google Scholar 

  27. Jeong SH, Lee HJ, Jung JY, Lee SH, Seo HY, Park WS, Jeon CO (2013) Effects of red pepper powder on microbial communities and metabolites during kimchi fermentation. Int J Food Microbiol 160:252–259

    Article  CAS  Google Scholar 

  28. Cho J, Lee D, Yang C, Jeon J, Kim J, Han H (2006) Microbial population dynamics of kimchi, a fermented cabbage product. FEMS Microbiol Lett 257:262–267

    Article  CAS  Google Scholar 

  29. Park JM, Shin JH, Lee DW, Song JC, Suh HJ, Chang UJ, Kim JM (2010) Identification of the lactic acid bacteria in Kimchi according to initial and over-ripened fermentation using PCR and 16S rRNA gene sequence analysis. Food Sci Biotechnol 19:541–546

    Article  CAS  Google Scholar 

  30. Chang CH, Chen YS, Yanagida F (2011) Isolation and characterisation of lactic acid bacteria from yan-jiang (fermented ginger), a traditional fermented food in Taiwan. J Sci Food Agric 91:1746–1750

    Article  CAS  Google Scholar 

  31. Nguyen DTL, Van Hoorde K, Cnockaert M, De Brandt E, De Bruyne K, Le BT, Vandamme P (2013) A culture-dependent and -independent approach for the identification of lactic acid bacteria associated with the production of nem chua, a Vietnamese fermented meat product. Food Res Int 50:232–240

    Article  CAS  Google Scholar 

  32. Ge J, Chai Y, Chen L, Ping W (2012) The dynamics of bacteria community diversity during the fermentation process of traditional soybean paste. Acta Ecol Sin 32:2532–2538

    Article  CAS  Google Scholar 

  33. De Vuyst L, Van Kerrebroecka S, Hartha H, Huys G, Daniel HM, Weckx S (2014) Microbial ecology of sourdough fermentations: diverse or uniform? Food Microbiol 37:11–29

    Article  Google Scholar 

  34. Duskova M, Kamenik J, Karpiskova R (2013) Weissella viridescens in meat products—a review. Acta Vet Brno 82:237–241

    Article  Google Scholar 

  35. Drosinos EH, Paramithiotis S, Kolovos G, Tsikouras I, Metaxopoulos I (2007) Phenotypic and technological diversity of lactic acid bacteria and staphylococci isolated from traditionally fermented sausages in Southern Greece. Food Microbiol 24:260–270

    Article  Google Scholar 

  36. Paramithiotis S, Kagkli DM, Blana VA, Nychas GJE, Drosinos EH (2008) Identification and characterization of Enterococcus spp. in Greek spontaneous sausage fermentation. J Food Prot 71:1244–1247

    Google Scholar 

  37. Foulquie Moreno MR, Sarantinopoulos S, Tsakalidou E, De Vuyst L (2006) The role and application of enterococci in food and health. Int J Food Microbiol 106:1–24

    Article  CAS  Google Scholar 

  38. Sabate J, Cano J, Querol A, Guillamon JM (1998) Diversity of Saccharomyces cerevisiae strains in wine fermentations: analysis for two consecutive years. Lett Appl Microbiol 26:452–455

    Article  CAS  Google Scholar 

  39. Egli CM, Edinger WD, Mitrakul CM, Henick-Kling T (1998) Dynamics of indigenous and inoculated yeast populations and their effects on the sensory character of Riesling and Chardonnay wines. J Appl Microbiol 85:779–789

    Article  CAS  Google Scholar 

  40. Ercolini D (2004) PCR-DGGE fingerprinting: novel strategies for detection of microbes in food: a review. J Microbiol Methods 56:297–314

    Article  CAS  Google Scholar 

  41. Nieminen TT, Vihavainen E, Paloranta A, Lehto J, Paulin L, Auvinen P, Solismaa M, Bjorkroth KJ (2011) Characterization of psychrotrophic bacterial communities in modified atmosphere-packed meat with terminal restriction length polymorphism. Int J Food Microbiol 144:360–366

    Article  CAS  Google Scholar 

  42. Doulgeraki AI, Ercolini D, Nychas GJE, Villani F (2012) Spoilage microbiota associated to the storage of raw meat in different conditions. Int J Food Microbiol 157:130–141

    Article  Google Scholar 

  43. Doulgeraki AI, Nychas GJE (2013) Monitoring the succession of the biota grown on a selective medium for pseudomonads during storage of minced beef with molecular-based methods. Food Microbiol 34:62–69

    Article  CAS  Google Scholar 

  44. Andorra I, Landi S, Mas A, Guillamon JM, Esteve-Zarzoso B (2008) Effect of oenological practices on microbial populations using culture independent techniques. Food Microbiol 25:849–856

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Director of the Laboratory of Microbiology and Biotechnology of Foods, Professor G.-J. E. Nychas for provision of recourses for the implementation of the study.

Conflict of interest

None.

Compliance with Ethics Requirements

This article does not contain any studies with human or animal subjects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Spiros Paramithiotis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paramithiotis, S., Doulgeraki, A.I., Karahasani, A. et al. Microbial population dynamics during spontaneous fermentation of Asparagus officinalis L. young sprouts. Eur Food Res Technol 239, 297–304 (2014). https://doi.org/10.1007/s00217-014-2222-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-014-2222-z

Keywords

Profiles

  1. Spiros Paramithiotis