Skip to main content

Physicochemical and sensory characteristics of red wines from the rediscovered autochthonous Tintilia grapevine grown in the Molise region (Italy)

Abstract

Tintilia is an autochthonous grapevine of the Italian Molise region which risked to disappear. However, recently, the production of Tintilia red wines is resuming and in the year 2011 the protected designation origin ‘Tintilia del Molise’ was officially registered. In this work, an analytical characterization of representative red wines from Tintilia grape is reported. A total of 36 different physicochemical variables were determined and discussed, considering those with an estimated coefficient of variation <25 % as more characterizing. These were found to be (mean): density (0.9949); dry extract (34.4 g L−1) and ashes (3.8 g L−1); ethyl alcohol (14.2 mL 100 mL−1), glycerol (9.2 g L−1) and total higher alcohols (1.7 g L−1); pH (3.65); the titratable (5.9 g L−1), fixed (5.4 g L−1), and salified (2.5 g L−1) acidity; buffering capacity (52.6 mM/L/pH); total phenols (2,341 mg mL−1); total flavonols (223 mg mL−1) and epicathechin (75.0 mg mL−1); %Red (49.1 %) and %Yellow (43.6 %). Sensory analysis was also performed by professional wine tasters. Finally, the Tintilia results were compared with those of Montepulciano wines. Findings of this analytical study describe the Tintilia red wine as a full-bodied wine; alcoholic; with feeble, but stable acidic profile; rich of phenols, especially flavonols; and finally, with a color balanced between red and yellow pigments.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Nosi C, Zanni L (2004) Moving from “typical products” to “food-related services”: the slow food case as a new business paradigm. Br Food J 106:779–792

    Article  Google Scholar 

  2. 2.

    Torri L, Noble AC, Heymann H (2013) Exploring American and Italian consumer preferences for Californian and Italian red wines. J Sci Food Agric 93:1852–1857

    CAS  Article  Google Scholar 

  3. 3.

    Bell T, Wilson A, Wickham A (2002) Tracking the Samnites: landscape and communications routes in the Sangro Valley, Italy. Am J Archaeol 106(2):169–186

    Article  Google Scholar 

  4. 4.

    Giaccio M, De Signore A (2004) Multivariate classification of Montepulciano d’Abruzzo wine samples according to vintage year. J Sci Food Agric 84(2):164–172

    CAS  Article  Google Scholar 

  5. 5.

    Presenza A, Minguzzi A, Petrillo C (2010) Managing wine tourism in Italy. J Tour Consum Pract 1(2):46–61

    Google Scholar 

  6. 6.

    Vitagliano M (1982) La vitivinicoltura molisana negli ultimi due secoli. Molise Agricoltura 10:3–15

    Google Scholar 

  7. 7.

    Reale S, Pilla F, Angiolillo A (2006) Genetic analysis of the Italian Vitis vinifera cultivar ‘Tintilia’ and related cultivars using SSR markers. J Hortic Sci Biotechnol 81(6):989–994

    CAS  Google Scholar 

  8. 8.

    Santiago JL, González I, Gago P, Alonso-Villaverde V, Boso S, Martínez MC (2008) Identification of and relationships among a number of teinturier grapevines that expanded across Europe in the early 20th century. Aust J Grape Wine Res 14(3):223–229

    Google Scholar 

  9. 9.

    Iorizzo M, Romano S, Lombardi SJ (2009) Caratteristiche di vini Tintilia ottenuti con lieviti autoctoni della regione Molise. L’Enologo 45(9):83–88

    Google Scholar 

  10. 10.

    European Community (1990) Methods for the analysis of wines. Off J Eur Commun. Regulation 2676/90, 1–192

    Google Scholar 

  11. 11.

    Rajković MB, Novaković ID, Petrović A (2007) Determination of titratable acidity in white wine. J Agric Sci Belgrade 52(2):169–184

    Article  Google Scholar 

  12. 12.

    OIV Compendium of international methods of analysis of spirituous beverages of vitivinicultural origin. http://www.oiv.org

  13. 13.

    Singleton VL, Orthofer R, Lamuela-Raventos RM (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin–Ciocalteu reagent. Methods Enzymol 299:152–178

    CAS  Article  Google Scholar 

  14. 14.

    Cliff MA, King MC, Schlosser J (2007) Anthocyanin, phenolic composition, colour measurement and sensory analysis of BC commercial red wines. Food Res Int 40(1):92–100

    CAS  Article  Google Scholar 

  15. 15.

    Francis FJ, Markakis PC (1989) Food colorants: anthocyanins. Crit Rev Food Sci Nutr 28(4):273–314

    CAS  Article  Google Scholar 

  16. 16.

    Glories Y (1986) La couleur des vins rouges. II. Mesure, origine et interprétation. Conn Vigne et Vin 18:253–271

    Google Scholar 

  17. 17.

    Ramon-Portugal F, Seiller I, Taillandier P, Favarel JL, Nepveu F, Strehaiano P (1999) Kinetics of production and consumption of organic acids during alcoholic fermentation by Saccharomyces cerevisiae. Food Technol Biotechnol 37:235–240

    CAS  Google Scholar 

  18. 18.

    De Leonardis A, Macciola V (2005) Indagine sulla realtà viti-vinicola del Molise attraverso la caratterizzazione di vini rossi di qualità. Industrie Bevande 34(197):211–224

    Google Scholar 

  19. 19.

    Sowalsky RA, Noble AC (1998) Comparison of the effects of concentration, pH and anion species on astringency and sourness of organic acids. Chem Senses 23(3):343–349

    CAS  Article  Google Scholar 

  20. 20.

    Fontoin H, Saucier C, Teissedre PL, Glories Y (2008) Effect of pH, ethanol and acidity on astringency and bitterness of grape seed tannin oligomers in model wine solution. Food Qual Prefer 19(3):286–291

    Article  Google Scholar 

  21. 21.

    Norris MB, Noble AC, Pangborn RM (1984) Human saliva and taste responses to acids varying in anions, titratable acidity, and pH. Physiol Behav 32(2):237–244

    CAS  Article  Google Scholar 

  22. 22.

    Dartiguenave C, Jeandet P, Maujean A (2000) Study of the contribution of the major organic acids of wine to the buffering capacity of wine in model solutions. Am J Enol Vitic 51(4):352–356

    CAS  Google Scholar 

  23. 23.

    Liu SQ (2002) Malolactic fermentation in wine—beyond deacidification. J Appl Microbiol 92(4):589–601

    CAS  Article  Google Scholar 

  24. 24.

    Fleet GH (2003) Yeast interactions and wine flavour. Int J Food Microbiol 86(1):11–22

    CAS  Article  Google Scholar 

  25. 25.

    Romano PS (1996) Determination of 2,3-butanediol in high and low acetoin producers of Saccharomyces cerevisiae wine yeasts by automated multiple development (AMD). Lett Appl Microbiol 22(4):299–302

    CAS  Article  Google Scholar 

  26. 26.

    Rocha SM (2004) Volatile composition of Baga red wine: assessment of the identification of the would-be impact odourants. Anal Chim Acta 513(1):257–262

    CAS  Article  Google Scholar 

  27. 27.

    Calderone G, Naulet N, Guillou C, Reniero F (2004) Characterization of European wine glycerol: stable carbon isotope approach. J Agric Food Chem 52(19):5902–5906

    CAS  Article  Google Scholar 

  28. 28.

    Campo E, Ferreira V, Escudero A, Marqués JC, Cacho J (2006) Quantitative gas chromatography–olfactometry and chemical quantitative study of the aroma of four Madeira wines. Anal Chim Acta 563(1):180–187

    CAS  Article  Google Scholar 

  29. 29.

    Tao YS (2009) Active volatiles of cabernet sauvignon wine from Changli County. Health 1(3):176–182

    Article  Google Scholar 

  30. 30.

    Peinado RA (2004) Comparative study of aromatic compounds in two young white wines subjected to pre-fermentative cryomaceration. Food Chem 84(4):585–590

    CAS  Article  Google Scholar 

  31. 31.

    Perestrelo RF (2006) Analytical characterization of the aroma of Tinta Negra Mole red wine: identification of the main odorants compounds. Anal Chim Acta 563(1):154–164

    CAS  Article  Google Scholar 

  32. 32.

    Gnekow B, Ough CS (1976) Methanol in wines and musts: source and amounts. Am J Enol Vitic 27(1):1–6

    CAS  Google Scholar 

  33. 33.

    Lee CY, Robinson WB, Van Buren JP, Acree TE, Stoewsand GS (1975) Methanol in wines in relation to processing and variety. Am J Enol Vitic 26(4):184–187

    CAS  Google Scholar 

  34. 34.

    Das DK, Sato M, Ray PS, Maulik G, Engelman RM, Bertelli AA, Bertelli A (1999) Cardioprotection of red wine: role of polyphenolic antioxidants. Drugs Exp Clin Res 25(2):115–120

    CAS  Google Scholar 

  35. 35.

    Nichenametla SN, Taruscio TG, Barney DL, Exon JH (2006) A review of the effects and mechanisms of polyphenolics in cancer. Crit Rev Food Sci Nutr 46(2):161–183

    CAS  Article  Google Scholar 

  36. 36.

    Harbertson JF, Spayd S (2006) Measuring phenolics in the winery. Am J Enol Vitic 57(3):280–288

    CAS  Google Scholar 

  37. 37.

    Simonetti P, Pietta P, Testolin G (1997) Polyphenol content and total antioxidant potential of selected Italian wine. J Agric Food Chem 45:1152–1155

    CAS  Article  Google Scholar 

  38. 38.

    Gambelli L, Santaroni GP (2004) Polyphenols content in some Italian red wines of different geographical origins. J Food Compos Anal 17(5):613–618

    CAS  Article  Google Scholar 

  39. 39.

    Gambacorta G, Antonacci D, Pati S, La Gatta M, Faccia M, Coletta A, La Notte E (2011) Influence of winemaking technologies on phenolic composition of Italian red wines. Eur Food Res Technol 233(6):1057–1066

    CAS  Article  Google Scholar 

  40. 40.

    Jeffery DW, Parker M, Smith PA (2008) Flavonol composition of Australian red and white wines determined by high-performance liquid chromatography. Aust J Grape Wine Res 14(3):153–161

    CAS  Google Scholar 

  41. 41.

    Pérez-Magariño S, Gonzalez-San Jose ML (2006) Polyphenols and colour variability of red wines made grapes harvested at different ripeness grade. Food Chem 96(2):197–208

    Article  Google Scholar 

  42. 42.

    Monagas M, Martín-Alvarez PJ, Bartolomé B, Gómez-Cordovés C (2006) Statistical interpretation of the colour parameters of red wines in function of their phenolic composition during aging in bottle. Eur Food Res Technol 222:702–709

    CAS  Article  Google Scholar 

  43. 43.

    Liao H, Cai Y, Haslam E (1992) Polyphenol interactions. Anthocyanins: co-pigmentation and colour changes in red wines. J Sci Food Agric 59(3):299–305

    CAS  Article  Google Scholar 

  44. 44.

    Pérez-Lamela C, García-Falcón MS, Simal-Gándara J, Orriols-Fernández I (2007) Influence of grape variety, vine system and enological treatments on the colour stability of young red wines. Food Chem 101(2):601–606

    Article  Google Scholar 

  45. 45.

    Castillo-Muñoz N, Fernández-González M, Gómez-Alonso S, García-Romero E, Hermosín-Gutiérrez I (2009) Red-color related phenolic composition of Garnacha Tintorera (Vitis vinifera L.) grapes and red wines. J Agric Food Chem 57(17):7883–7891

    Article  Google Scholar 

  46. 46.

    Guan L, Li JH, Fan PG, Chen S, Fang JB, Li SH, Wu BH (2012) Anthocyanin accumulation in various organs of a teinturier cultivar (Vitis vinifera L.) during the growing season. Am J Enol Vitic 63(2):177–184

    CAS  Article  Google Scholar 

  47. 47.

    He JJ, Liu YX, Pan QH, Cui XY, Duan CQ (2010) Different anthocyanin profiles of the skin and the pulp of Yan73 (Muscat Hamburg × Alicante Bouschet) grape berries. Molecules 15(3):1141–1153

    CAS  Article  Google Scholar 

  48. 48.

    Yanniotis S, Kotseridis G, Orfanidou A, Petraki A (2007) Effect of ethanol, dry extract and glycerol on the viscosity of wine. J Food Eng 81(2):339–403

    Article  Google Scholar 

  49. 49.

    Coletta A, Trani A, Faccia M, Punzi R, Dipalmo T, Crupi P, Antonacci D, Gambacorta G (2013) Influence of viticultural practices and winemaking technologies on phenolic composition and sensory characteristics of Negroamaro red wines. Int J Food Sci Technol 48:2215–2227

    CAS  Google Scholar 

  50. 50.

    de Castilhos MBM, Conti-Silva AC, Del Bianchi VL (2012) Effect of grape pre-drying and static pomace contact on physicochemical properties and sensory acceptance of Brazilian (Bordô and Isabel) red wines. Eur Food Res Technol 235(2):345–354

    Article  Google Scholar 

Download references

Acknowledgments

The research is part of the Project “Pilot study for the rationalization of the winemaking process for the production of wines made from Tintilia grapes”, has been financially supported by the Regional Agency for Innovation and Development of Agriculture in Molise (ARSIAM)” of Molise Region. The authors are very grateful to Margherita Di Cristofaro for the help given in the editing the manuscript and to the Dr. Francesco Iapaolo, member of IAPS (Italian Association of Professional Sommelier), for his valuable contribute as panel leader in the tasting assessment.

Conflict of interest

None.

Compliance with Ethics Requirements

This article does not contain any studies with human or animal subjects.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Antonella De Leonardis.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Iorizzo, M., Macciola, V., Testa, B. et al. Physicochemical and sensory characteristics of red wines from the rediscovered autochthonous Tintilia grapevine grown in the Molise region (Italy). Eur Food Res Technol 238, 1037–1048 (2014). https://doi.org/10.1007/s00217-014-2186-z

Download citation

Keywords

  • Tintilia
  • Teinturier grapevines
  • Montepulciano
  • Molise
  • Red wines