δ13C values and phytanic acid diastereomer ratios: combined evaluation of two markers suggested for authentication of organic milk and dairy products

Abstract

Authentication of organic milk by suitable markers is currently attracting more and more interests in food control. In this study, we aimed to compare the efficiency of the markers stable carbon isotope ratio (δ13C value) with the SRR/RRR phytanic acid diastereomer ratio (SRR/RRR) of milk fat for distinguishing different feeding systems. For stable carbon isotope ratio analysis by elemental analysis–isotope ratio mass spectrometry (EA-IRMS), we first developed a simple sample preparation method based on milk fat extracts allowed to evaporate the solvent in tin capsules for liquid samples. The δ13C values and reproducibility measured with this alternative sample pre-treatment method excellently matched those obtained with the current standard method. Applied to milk samples, the results of the EA-IRMS analysis were linked to the SRR/RRR, and both markers allowed to distinguish milk from cows fed with hay (δ13C value > −28.0 ‰, SRR/RRR <1.5) from feed used in conventional milk production which contained maize silage (C4-plants) (p < 0.001). Milk fat of organic retail cheese samples was also highly depleted in 13C (δ13C value −30.0 ‰ ± 1.1), and the SRR/RRR was low (<1.5). However, seven cheese samples showed inconsistent δ13C values and SRR/RRR, most likely due to the feeding of grass silage. Both parameters (δ13C values and SRR/RRR), together with the phytanic acid content of milk fat, also allowed distinguishing between the feeding of high amounts of pasture, hay, and/or grass silage.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Bund Ökologischer Lebensmittelwirtschaft (2011) http://www.boelw.de/uploads/media/pdf/Dokumentation/Zahlen__Daten__Fakten/ZDF2011.pdf, Accessed 9 May 2012

  2. 2.

    Kahl J, Baars T, Bügel S, Busscher N, Huber M, Kusche D, Rembiałkowska E, Schmid O, Seidel K, Taupier-Letage B, Velimirov A, Załecka A (2012) J Sci Food Agric 92:2760–2765

    CAS  Article  Google Scholar 

  3. 3.

    Tres A, van Ruth SM (2011) J Agric Food Chem 59:8816–8821

    CAS  Article  Google Scholar 

  4. 4.

    Capuano E, Boerrigter-Eenling R, van der Veer G, van Ruth SM (2013) J Sci Food Agric 93:12–28

    CAS  Article  Google Scholar 

  5. 5.

    Molkentin J (2009) J Agric Food Chem 57:785–790

    CAS  Article  Google Scholar 

  6. 6.

    Nauta WJ, Baars T, Saatkamp H, Weenink D, Roep D (2009) Livest Sci 121:187–199

    Article  Google Scholar 

  7. 7.

    Camin F, Perini M, Colombari G, Bontempo L, Versini G (2008) Rapid Commun Mass Spectrom 22:1690–1696

    CAS  Article  Google Scholar 

  8. 8.

    Bontempo L, Lombardi G, Paoletti R, Ziller L, Camin F (2012) Int Dairy J 23:99–104

    CAS  Article  Google Scholar 

  9. 9.

    Molkentin J, Giesemann A (2007) Anal Bioanal Chem 388:297–305

    CAS  Article  Google Scholar 

  10. 10.

    Wilson GF, Mackenzie DD, Brookes IM, Lyon GL (1988) Br J Nutr 60:605–617

    CAS  Article  Google Scholar 

  11. 11.

    Boutton TW, Tyrrell HF, Patterson BW, Varga GA, Klein PD (1988) J Anim Sci 66:2636–2645

    CAS  Google Scholar 

  12. 12.

    Metges C, Kempe K, Schmidt H (1990) Br J Nutr 63:187–196

    CAS  Article  Google Scholar 

  13. 13.

    Molkentin J, Giesemann A (2010) Anal Bioanal Chem 398:1493–1500

    CAS  Article  Google Scholar 

  14. 14.

    Butler G, Nielsen JH, Larsen MK, Rehberger B, Stergiadis S, Canever A, Leifert C (2011) NJAS Wagening J Life Sci 58:97–102

    Article  Google Scholar 

  15. 15.

    Slots T, Butler G, Leifert C, Kristensen T, Skibsted LH, Nielsen JH (2009) J Dairy Sci 92:2057–2066

    CAS  Article  Google Scholar 

  16. 16.

    Jahreis G, Fritsche J, Steinhart H (1996) Lipid Fett 98:356–359

    CAS  Article  Google Scholar 

  17. 17.

    Vetter W, Schröder M (2010) Food Chem 119:746–752

    CAS  Article  Google Scholar 

  18. 18.

    Schröder M, Vetter W (2011) J Am Oil Chem Soc 88:341–349

    Article  Google Scholar 

  19. 19.

    Ellis KA, Innocent G, Grove-White D, Cripps P, McLean WG, Howard CV, Mihm M (2006) J Dairy Sci 89:1938–1950

    CAS  Article  Google Scholar 

  20. 20.

    Baars T, Schröder M, Kusche D, Vetter W (2012) Org Agric 2:13–21

    Article  Google Scholar 

  21. 21.

    Che BN, Kristensen T, Nebel C, Dalsgaard TK, Hellgren LI, Young JF, Larsen MK (2013) J Agric Food Chem 61:225–230

    CAS  Article  Google Scholar 

  22. 22.

    Collomb M, Bisig W, Bütikofer U, Sieber R, Bregy M, Etter L (2008) Int Dairy J 18:976–982

    CAS  Article  Google Scholar 

  23. 23.

    van Den Brink DM, van Miert JNI, Dacremont G, Rontani J-F, Wanders RJA (2005) J Biol Chem 280:26838–26844

    Article  Google Scholar 

  24. 24.

    Schröder M, Lutz NL, Tangwan EC, Hajazimi E, Vetter W (2012) Eur Food Res Technol 234:955–962

    Article  Google Scholar 

  25. 25.

    Schröder M, Yousefi F, Vetter W (2011) Eur Food Res Technol 232:167–174

    Article  Google Scholar 

  26. 26.

    Weichbrodt M, Vetter W, Luckas B (2000) J AOAC Int 83:1334–1343

    CAS  Google Scholar 

  27. 27.

    Thurnhofer S, Lehnert K, Vetter W (2008) Eur Food Res Technol 226:975–983

    CAS  Article  Google Scholar 

  28. 28.

    Vetter W, Armbruster W, Betson TR, Schleucher J, Kapp T, Lehnert K (2006) Anal Chim Acta 577:250–256

    CAS  Article  Google Scholar 

  29. 29.

    Coplen TB, Brand WA, Gehre M, Gröning M, Meijer HAJ, Toman B, Verkouteren RM (2006) Anal Chem 78:2439–2441

    CAS  Article  Google Scholar 

  30. 30.

    Fiebig H-J (2011) Deutsche Gesellschaft für Fettwissenschaft: Deutsche Einheitsmethoden zur Untersuchung von Fetten, Fettprodukten. Tensiden und verwandten Stoffen, Wissenschaftliche Verlagsgesellschaft, Stuttgart

    Google Scholar 

  31. 31.

    Jalali-Heravi M, Vosough M (2004) J Chromatogr A 1024:165–176

    CAS  Article  Google Scholar 

  32. 32.

    Schröder M, Vetter W (2013) J Am Oil Chem Soc 90:771–790

    Article  Google Scholar 

  33. 33.

    Li D, Schröder M, Vetter W (2012) Chromatographia 75:1–6

    Article  Google Scholar 

  34. 34.

    Vetter W, Gaul S, Thurnhofer S, Mayer K (2007) Anal Bioanal Chem 389:597–604

    CAS  Article  Google Scholar 

  35. 35.

    Pulchan J, Abrajano TA, Helleur R (1997) J Anal Appl Pyrol 42:135–150

    CAS  Article  Google Scholar 

  36. 36.

    Naraoka H, Yamada K, Ishiwatari R (1994) J Mass Spectrom Soc Jpn 42:315–323

    CAS  Article  Google Scholar 

  37. 37.

    Aramendía MA, Marinas A, Marinas JM, Moreno JM, Moalem M, Rallo L, Urbano FJ (2007) Rapid Commun Mass Spectrom 21:487–496

    Article  Google Scholar 

  38. 38.

    Molkentin J (2013) Food Chem 137:25–30

    CAS  Article  Google Scholar 

  39. 39.

    Hansen RP (1966) Nature 210:841

    CAS  Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Raoul von Schmettow and Rainer Funk at the research farm of the University of Hohenheim (Agricultural Experiment Station of the University of Hohenheim, Location Meiereihof, Stuttgart, Germany) for design and performance of the feeding study with the cows and Wolfgang Armbruster for the technical support during the IRMS measurements.

Conflict of interest

The authors declare that they have no conflict of interest.

Compliance with Ethics Requirements

This article does not contain any studies with human or animal subjects.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Walter Vetter.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kaffarnik, S., Schröder, M., Lehnert, K. et al. δ13C values and phytanic acid diastereomer ratios: combined evaluation of two markers suggested for authentication of organic milk and dairy products. Eur Food Res Technol 238, 819–827 (2014). https://doi.org/10.1007/s00217-014-2158-3

Download citation

Keywords

  • Food authentication
  • Organic food
  • EA-IRMS
  • δ13C values
  • Milk fat
  • Dairy products
  • Phytanic acid