European Food Research and Technology

, Volume 238, Issue 5, pp 819–827 | Cite as

δ13C values and phytanic acid diastereomer ratios: combined evaluation of two markers suggested for authentication of organic milk and dairy products

  • Stefanie Kaffarnik
  • Markus Schröder
  • Katja Lehnert
  • Ton Baars
  • Walter VetterEmail author
Original Paper


Authentication of organic milk by suitable markers is currently attracting more and more interests in food control. In this study, we aimed to compare the efficiency of the markers stable carbon isotope ratio (δ13C value) with the SRR/RRR phytanic acid diastereomer ratio (SRR/RRR) of milk fat for distinguishing different feeding systems. For stable carbon isotope ratio analysis by elemental analysis–isotope ratio mass spectrometry (EA-IRMS), we first developed a simple sample preparation method based on milk fat extracts allowed to evaporate the solvent in tin capsules for liquid samples. The δ13C values and reproducibility measured with this alternative sample pre-treatment method excellently matched those obtained with the current standard method. Applied to milk samples, the results of the EA-IRMS analysis were linked to the SRR/RRR, and both markers allowed to distinguish milk from cows fed with hay (δ13C value > −28.0 ‰, SRR/RRR <1.5) from feed used in conventional milk production which contained maize silage (C4-plants) (p < 0.001). Milk fat of organic retail cheese samples was also highly depleted in 13C (δ13C value −30.0 ‰ ± 1.1), and the SRR/RRR was low (<1.5). However, seven cheese samples showed inconsistent δ13C values and SRR/RRR, most likely due to the feeding of grass silage. Both parameters (δ13C values and SRR/RRR), together with the phytanic acid content of milk fat, also allowed distinguishing between the feeding of high amounts of pasture, hay, and/or grass silage.


Food authentication Organic food EA-IRMS δ13C values Milk fat Dairy products Phytanic acid 



We are grateful to Raoul von Schmettow and Rainer Funk at the research farm of the University of Hohenheim (Agricultural Experiment Station of the University of Hohenheim, Location Meiereihof, Stuttgart, Germany) for design and performance of the feeding study with the cows and Wolfgang Armbruster for the technical support during the IRMS measurements.

Conflict of interest

The authors declare that they have no conflict of interest.

Compliance with Ethics Requirements

This article does not contain any studies with human or animal subjects.


  1. 1.
    Bund Ökologischer Lebensmittelwirtschaft (2011), Accessed 9 May 2012
  2. 2.
    Kahl J, Baars T, Bügel S, Busscher N, Huber M, Kusche D, Rembiałkowska E, Schmid O, Seidel K, Taupier-Letage B, Velimirov A, Załecka A (2012) J Sci Food Agric 92:2760–2765CrossRefGoogle Scholar
  3. 3.
    Tres A, van Ruth SM (2011) J Agric Food Chem 59:8816–8821CrossRefGoogle Scholar
  4. 4.
    Capuano E, Boerrigter-Eenling R, van der Veer G, van Ruth SM (2013) J Sci Food Agric 93:12–28CrossRefGoogle Scholar
  5. 5.
    Molkentin J (2009) J Agric Food Chem 57:785–790CrossRefGoogle Scholar
  6. 6.
    Nauta WJ, Baars T, Saatkamp H, Weenink D, Roep D (2009) Livest Sci 121:187–199CrossRefGoogle Scholar
  7. 7.
    Camin F, Perini M, Colombari G, Bontempo L, Versini G (2008) Rapid Commun Mass Spectrom 22:1690–1696CrossRefGoogle Scholar
  8. 8.
    Bontempo L, Lombardi G, Paoletti R, Ziller L, Camin F (2012) Int Dairy J 23:99–104CrossRefGoogle Scholar
  9. 9.
    Molkentin J, Giesemann A (2007) Anal Bioanal Chem 388:297–305CrossRefGoogle Scholar
  10. 10.
    Wilson GF, Mackenzie DD, Brookes IM, Lyon GL (1988) Br J Nutr 60:605–617CrossRefGoogle Scholar
  11. 11.
    Boutton TW, Tyrrell HF, Patterson BW, Varga GA, Klein PD (1988) J Anim Sci 66:2636–2645Google Scholar
  12. 12.
    Metges C, Kempe K, Schmidt H (1990) Br J Nutr 63:187–196CrossRefGoogle Scholar
  13. 13.
    Molkentin J, Giesemann A (2010) Anal Bioanal Chem 398:1493–1500CrossRefGoogle Scholar
  14. 14.
    Butler G, Nielsen JH, Larsen MK, Rehberger B, Stergiadis S, Canever A, Leifert C (2011) NJAS Wagening J Life Sci 58:97–102CrossRefGoogle Scholar
  15. 15.
    Slots T, Butler G, Leifert C, Kristensen T, Skibsted LH, Nielsen JH (2009) J Dairy Sci 92:2057–2066CrossRefGoogle Scholar
  16. 16.
    Jahreis G, Fritsche J, Steinhart H (1996) Lipid Fett 98:356–359CrossRefGoogle Scholar
  17. 17.
    Vetter W, Schröder M (2010) Food Chem 119:746–752CrossRefGoogle Scholar
  18. 18.
    Schröder M, Vetter W (2011) J Am Oil Chem Soc 88:341–349CrossRefGoogle Scholar
  19. 19.
    Ellis KA, Innocent G, Grove-White D, Cripps P, McLean WG, Howard CV, Mihm M (2006) J Dairy Sci 89:1938–1950CrossRefGoogle Scholar
  20. 20.
    Baars T, Schröder M, Kusche D, Vetter W (2012) Org Agric 2:13–21CrossRefGoogle Scholar
  21. 21.
    Che BN, Kristensen T, Nebel C, Dalsgaard TK, Hellgren LI, Young JF, Larsen MK (2013) J Agric Food Chem 61:225–230CrossRefGoogle Scholar
  22. 22.
    Collomb M, Bisig W, Bütikofer U, Sieber R, Bregy M, Etter L (2008) Int Dairy J 18:976–982CrossRefGoogle Scholar
  23. 23.
    van Den Brink DM, van Miert JNI, Dacremont G, Rontani J-F, Wanders RJA (2005) J Biol Chem 280:26838–26844CrossRefGoogle Scholar
  24. 24.
    Schröder M, Lutz NL, Tangwan EC, Hajazimi E, Vetter W (2012) Eur Food Res Technol 234:955–962CrossRefGoogle Scholar
  25. 25.
    Schröder M, Yousefi F, Vetter W (2011) Eur Food Res Technol 232:167–174CrossRefGoogle Scholar
  26. 26.
    Weichbrodt M, Vetter W, Luckas B (2000) J AOAC Int 83:1334–1343Google Scholar
  27. 27.
    Thurnhofer S, Lehnert K, Vetter W (2008) Eur Food Res Technol 226:975–983CrossRefGoogle Scholar
  28. 28.
    Vetter W, Armbruster W, Betson TR, Schleucher J, Kapp T, Lehnert K (2006) Anal Chim Acta 577:250–256CrossRefGoogle Scholar
  29. 29.
    Coplen TB, Brand WA, Gehre M, Gröning M, Meijer HAJ, Toman B, Verkouteren RM (2006) Anal Chem 78:2439–2441CrossRefGoogle Scholar
  30. 30.
    Fiebig H-J (2011) Deutsche Gesellschaft für Fettwissenschaft: Deutsche Einheitsmethoden zur Untersuchung von Fetten, Fettprodukten. Tensiden und verwandten Stoffen, Wissenschaftliche Verlagsgesellschaft, StuttgartGoogle Scholar
  31. 31.
    Jalali-Heravi M, Vosough M (2004) J Chromatogr A 1024:165–176CrossRefGoogle Scholar
  32. 32.
    Schröder M, Vetter W (2013) J Am Oil Chem Soc 90:771–790CrossRefGoogle Scholar
  33. 33.
    Li D, Schröder M, Vetter W (2012) Chromatographia 75:1–6CrossRefGoogle Scholar
  34. 34.
    Vetter W, Gaul S, Thurnhofer S, Mayer K (2007) Anal Bioanal Chem 389:597–604CrossRefGoogle Scholar
  35. 35.
    Pulchan J, Abrajano TA, Helleur R (1997) J Anal Appl Pyrol 42:135–150CrossRefGoogle Scholar
  36. 36.
    Naraoka H, Yamada K, Ishiwatari R (1994) J Mass Spectrom Soc Jpn 42:315–323CrossRefGoogle Scholar
  37. 37.
    Aramendía MA, Marinas A, Marinas JM, Moreno JM, Moalem M, Rallo L, Urbano FJ (2007) Rapid Commun Mass Spectrom 21:487–496CrossRefGoogle Scholar
  38. 38.
    Molkentin J (2013) Food Chem 137:25–30CrossRefGoogle Scholar
  39. 39.
    Hansen RP (1966) Nature 210:841CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Stefanie Kaffarnik
    • 1
  • Markus Schröder
    • 1
  • Katja Lehnert
    • 1
  • Ton Baars
    • 2
  • Walter Vetter
    • 1
    Email author
  1. 1.Institute of Food ChemistryUniversity of HohenheimStuttgartGermany
  2. 2.Research Institute of Organic Agriculture (FIBL)FrickSwitzerland

Personalised recommendations