Advertisement

European Food Research and Technology

, Volume 238, Issue 2, pp 259–264 | Cite as

Factors affecting tocopherol contents in coffee brews: NP-HPLC/FLD, RP-UPLC-ESI/MSn and spectroscopic study

  • Paweł Górnaś
  • Aleksander Siger
  • Krzysztof Polewski
  • Iveta Pugajeva
  • Agnieszka Waśkiewicz
Original Paper

Abstract

Qualitative and quantitative determination of tocopherols in filtered and unfiltered coffee brews was investigated. The NP-HPLC/FLD and RP-UPLC-ESI/MSn techniques as well as fluorescence spectroscopy turned out to be very useful tools not only to estimate tocopherol contents, but also to detect contaminants in coffee brew tocopherol extracts. In all analysed coffee brew samples, only α- and β-T were detected. In Arabica coffee brews, the content of the β homologue was three to four times higher than that of the α homologue; however, in Robusta, they were almost identical. Unfiltered coffee brews contained about ten times more tocopherols, 3.02–5.26 and 3.39–16.52, than filtered brews, 0.4–0.71 and 1.26–1.77 μg/100 ml for α-T and β-T, respectively. The reduction in the size of ground coffee beans from 0.7 to 0.3 mm increases the concentration of tocopherols almost three times. Suspended coffee bean dust was the main source of tocopherols in coffee brews.

Keywords

Coffee brew Tocopherols Fluorescence Arabica and Robusta NP-HPLC UPLC-ESI/MSn 

Abbreviations

NP-HPLC/FLD

Normal phase high-performance liquid chromatograph/fluorescence detector

RP-UPLC-ESI/MSn

Reverse phase ultra-performance liquid chromatography electrospray ionization/mass spectrometry

T

Tocopherol

Notes

Acknowledgments

This study was partially supported by a grant 508/82-4 from the Poznan University of Life Sciences, Poznan, Poland, and by a grant N312 1410 33 from the Polish Ministry of Science and Higher Education.

Conflict of interest

None.

Compliance with Ethics Requirements

This article does not contain any studies with human or animal subjects.

References

  1. 1.
    Camargo MC, Toledo MC, Farah HG (1999) Food Addit Contam 16:79–87CrossRefGoogle Scholar
  2. 2.
    Esquivel P, Jimenez VM (2012) Food Res Int 46:488–495CrossRefGoogle Scholar
  3. 3.
    Farah A, Donangelo CM (2006) Braz J Plant Physiol 18:23–36CrossRefGoogle Scholar
  4. 4.
    Rufián-Henares JA, Morales FJ (2007) J Agric Food Chem 55:10016–10021CrossRefGoogle Scholar
  5. 5.
    Alves RC, Casal S, Beatriz M, Oliveira PP (2010) J Food Compos Anal 23:802–808CrossRefGoogle Scholar
  6. 6.
    Vinson JA, Proch J, Bose P, Muchler S, Taffera P, Shuta D, Samman N, Agbor GA (2006) J Agric Food Chem 54: 8071–8076 Google Scholar
  7. 7.
    Svilaas A, Sakhi AK, Andersen LF, Svilaas T, Ström EC, Jacobs DR Jr, Ose L, Blomhoff R (2004) J Nutr 134:562–567 Google Scholar
  8. 8.
    Pulido R, Hernandez-Garcia M, Saura-Calixto F (2003) Eur J Clin Nutr 57:1275–1282CrossRefGoogle Scholar
  9. 9.
    Ogawa M, Kamiya C, Iida Y (1989) Nippon Shokuhin Kogyo Gakkaishi 36:490–494CrossRefGoogle Scholar
  10. 10.
    Urgert R, Weg G, Kosmeijer-Schuil TG, Bovenkamp P, Hovebier R, Katan MB (1995) J Agric Food Chem 43:2167–2172CrossRefGoogle Scholar
  11. 11.
    Alves RC, Casal S, Beatriz M, Oliveira PP (2009) Food Chem 115:1549–1555CrossRefGoogle Scholar
  12. 12.
    Ratnayake WMN, Hollywood R, O’Grady E, Stavric B (1993) Food Chem Toxicol 31:263–269CrossRefGoogle Scholar
  13. 13.
    Manzi P, Panfili G, Pizzoferrato L (1996) Chromatographia 43:89–93CrossRefGoogle Scholar
  14. 14.
    Dwiecki K, Górnaś P, Jackowiak H, Nogala-Kałucka M, Polewski K (2007) J Food Lipids 14:50–61CrossRefGoogle Scholar
  15. 15.
    Dwiecki K, Górnaś P, Wilk A, Nogala-Kałucka M, Polewski K (2007) Cell Mol Biol Lett 12:51–69CrossRefGoogle Scholar
  16. 16.
    Górnaś P, Neunert G, Baczyński K, Polewski K (2009) Food Chem 114:190–196CrossRefGoogle Scholar
  17. 17.
    Ruiz RP (2005) In: Wrolstad RE, Decker EA, Schwartz SJ, Sporns P (eds) Handbook of food analytical chemistry, water, proteins, enzymes, lipids, and carbohydrates. John Wiley & Sons Inc., New Jersey, pp 7–8Google Scholar
  18. 18.
    González AG, Pablos F, Martin MJ, Leon-Camacho M, Valdenebro MS (2001) Food Chem 73:93–101CrossRefGoogle Scholar
  19. 19.
    Inoue T, Tatemori S, Muranaka N, Hirahara Y, Homma S, Nakane T, Takano A, Nomi Y, Otsuka Y (2012) J Agric Food Chem 60:9581–9588CrossRefGoogle Scholar
  20. 20.
    Butinar B, Bučar-Miklavčič M, Mariani C, Raspor P (2011) Food Chem 128:505–512CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Paweł Górnaś
    • 1
  • Aleksander Siger
    • 2
  • Krzysztof Polewski
    • 3
  • Iveta Pugajeva
    • 4
  • Agnieszka Waśkiewicz
    • 5
  1. 1.Latvia State Institute of Fruit-GrowingDobeleLatvia
  2. 2.Department of Food Biochemistry and AnalysisPoznan University of Life SciencesPoznanPoland
  3. 3.Department of PhysicsPoznan University of Life SciencesPoznanPoland
  4. 4.Institute of Food Safety, Animal Health and Environment BIORRigaLatvia
  5. 5.Department of ChemistryPoznan University of Life SciencesPoznanPoland

Personalised recommendations