Lactobacillus plantarum 70810 from Chinese paocai as a potential source of β-galactosidase for prebiotic galactooligosaccharides synthesis


A novel food-grade strain Lactobacillus plantarum 70810 producing β-galactosidase with high transgalactosylation activity was isolated from Chinese paocai. The galactooligosaccharides (GOS) were synthesized by using this enzyme with a maximum yield of 44.3 % (w/w) from 400 g/L lactose at 45 °C for 10 h. The β-galactosidase from this strain was purified to homogeneity by ammonium sulfate precipitation, anion exchange chromatography and gel filtration chromatography. It was a heterodimer arrangement of approximately 105 kDa composed of two subunits of 35 and 72 kDa. The optimal pH of the purified β-galactosidase was 8.0 for both o-nitrophenyl-β-d-galactopyranoside (oNPG) and lactose hydrolysis, and optimal temperature was 60 °C and 55 °C, respectively. Its K m and V max values for oNPG and lactose were 0.89 ± 0.05 mM, 194 ± 3.0 μmoL/min/mg protein, and 9.88 ± 0.16 mM, 15.88 ± 0.21 μmoL/min/mg protein, respectively. This enzyme was slightly inhibited by the hydrolysis products, that is, glucose and galactose. Since the β-galactosidase from L. plantarum 70810 exhibited higher transgalactosylation activity, strong affinity for lactose and low end-product inhibition, it was suggested to be a potential candidate for the synthesis of prebiotic GOS.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    Gibson GR, Roberfroid MB (1995) Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr 125:1401–1412

    CAS  Google Scholar 

  2. 2.

    Bouhnik Y, Raskine L, Simoneau G, Vicaut E, Neut C, Flourié B, Brouns F, Bornet FR (2004) The capacity of nondigestible carbohydrates to stimulate fecal bifidobacteria in healthy humans: a double-blind, randomized, placebo-controlled, parallel-group, dose-response relation study. Am J Clin Nutr 80:1658–1664

    CAS  Google Scholar 

  3. 3.

    Torres DPM, Goncalves MPF, Teixeira JA, Rodrigues LR (2010) Galacto-oligosaccharides: production, properties, applications, and significance as prebiotics. Compr Rev Food Sci F 9:438–454

    Article  CAS  Google Scholar 

  4. 4.

    Crittenden RG, Playne MJ (1996) Production, properties and applications of food-grade oligosaccharides. Trends Food Sci Technol 7:353–361

    Article  CAS  Google Scholar 

  5. 5.

    Gosling A, Stevens GW, Barber AR, Kentish SE, Gras SL (2010) Recent advances refining galactooligosaccharide production from lactose. Food Chem 121:307–318

    Article  CAS  Google Scholar 

  6. 6.

    Park A, Oh DK (2010) Galacto-oligosaccharide production using microbial β-galactosidase: current state and perspectives. Appl Microbiol Biotechnol 85:1279–1286

    Article  CAS  Google Scholar 

  7. 7.

    Li W, Sun Y, Ye H, Zeng XX (2010) Synthesis of oligosaccharides with lactose and N-acetylglucosamine as substrates by using β-d-galactosidase from Bacillus circulans. Eur Food Res Technol 231:55–63

    Article  CAS  Google Scholar 

  8. 8.

    Panesar PS, Panesar R, Singh RS, Kennedy JF, Kumar H (2006) Microbial production, immobilization and applications of β-d-galactosidase. J Chem Technol Biotechnol 81:530–543

    Article  CAS  Google Scholar 

  9. 9.

    Iqbal S, Nguyen TH, Nguyen TT, Maischberger T, Haltrich D (2010) β-Galactosidase from Lactobacillus plantarum WCFS1: biochemical characterization and formation of prebiotic galacto-oligosaccharides. Carbohydr Res 345:1408–1416

    Article  CAS  Google Scholar 

  10. 10.

    Splechtna B, Nguyen TH, Zehetner R, Lettner HP, Lorenz W, Haltrich D (2007) Process development for the production of prebiotic galacto-oligosaccharides from lactose using β-galactosidase from Lactobacillus sp. Biotechnol J 2:480–485

    Article  CAS  Google Scholar 

  11. 11.

    Tzortzis G, Goulas AK, Gibson GR (2005) Synthesis of prebiotic galactooligosaccharides using whole cells of a novel strain, Bifidobacterium bifidum NCIMB 41171. Appl Microbiol Biotechnol 68:412–416

    Article  CAS  Google Scholar 

  12. 12.

    Lim JS, Lee JH, Kang SW, Park SW, Kim SW (2007) Studies on production and physical properties of neo-FOS produced by co-immobilized Penicillium citrinum and neo-fructosyltransferase. Eur Food Res Technol 225:457–462

    Article  CAS  Google Scholar 

  13. 13.

    Rabiu BA, Jay AJ, Gibson GR, Rastall RA (2001) Synthesis and fermentation properties of novel galacto-oligosaccharides by β-galactosidase from Bifidobacterium species. Appl Environ Microbiol 67:2526–2530

    Article  CAS  Google Scholar 

  14. 14.

    Iqbal S, Nguyen TH, Nguyen HA, Nguyen TT, Maischberger T, Kittl R, Haltrich D (2011) Characterization of a heterodimeric GH2 β-galactosidase from Lactobacillus sakei Lb790 and formation of prebiotic galacto-oligosaccharides. J Agric Food Chem 59:3803–3811

    Article  CAS  Google Scholar 

  15. 15.

    Rastall RA, Maitin V (2002) Prebiotics and synbiotics: towards the next generation. Curr Opin Biotechnol 13:490–496

    Article  CAS  Google Scholar 

  16. 16.

    Gänzle MG (2012) Enzymatic synthesis of galacto-oligosaccharides and other lactose derivatives (hetero-oligosaccharides) from lactose. Int Dairy J 22:116–122

    Article  Google Scholar 

  17. 17.

    Cardelle-Cobas A, Corzo N, Martínez-Villaluenga C, Olano A, Villamiel M (2011) Effect of reaction conditions on lactulose-derived trisaccharides obtained by transgalactosylation with β-galactosidase of Kluyveromyces lactis. Eur Food Res Technol 233:89–94

    Article  CAS  Google Scholar 

  18. 18.

    Feng MQ, Chen XH, Li CC, Nurgul R, Dong MS (2012) Isolation and identification of an exopolysaccharide-producing lactic acid bacterium strain from Chinese paocai and biosorption of Pb(II) by its exopolysaccharide. J Food Sci 77:T111–T117

    Article  CAS  Google Scholar 

  19. 19.

    Cardelle-Cobas A, Martínez-Villaluenga C, Sanz ML, Montilla A (2009) Gas chromatographic–mass spectrometric analysis of galactosyl derivatives obtained by the action of two different β-galactosidases. Food Chem 114:1099–1105

    Article  CAS  Google Scholar 

  20. 20.

    Li W, Xiang XL, Tang S, Hu B, Tian L, Sun Y, Ye H, Zeng XX (2009) Effective enzymatic synthesis of lactosucrose and its analogues by β-d-galactosidase from Bacillus circulans. J Agric Food Chem 57:3927–3933

    Article  CAS  Google Scholar 

  21. 21.

    Leary NO, Pembroke A, Duggan PF (1992) Improving accuracy of glucose oxidase procedure for glucose determinations on discrete analyzers. Clin Chem 38:298–302

    CAS  Google Scholar 

  22. 22.

    Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  23. 23.

    Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 277:680–685

    Article  Google Scholar 

  24. 24.

    Nguyen TH, Splechtna B, Steinböck M, Kneifel W, Lettner HP, Kulbe KD, Haltrich D (2006) Purification and characterization of two novel β-galactosidases from Lactobacillus reuteri. J Agric Food Chem 54:4989–4998

    Article  CAS  Google Scholar 

  25. 25.

    Hung MN, Lee BH (2002) Purification and characterization of a recombinant β-galactosidase with transgalactosylation activity from Bifidobacterium infantis HL96. Appl Microbiol Biotechnol 58:439–445

    Article  CAS  Google Scholar 

  26. 26.

    Hsu CA, Lee SL, Chou CC (2007) Enzymatic production of galactooligosaccharides by β-galactosidase from Bifidobacterium longum BCRC 15708. J Agric Food Chem 55:2225–2230

  27. 27.

    Nguyen TH, Splechtna B, Krasteva S, Kneifel W, Kulbe KD, Divne C, Haltrich D (2007) Characterization and molecular cloning of a heterodimeric β-galactosidase from the probiotic strain Lactobacillus acidophilus R22. FEMS Microbiol Lett 269:136–144

    Article  CAS  Google Scholar 

  28. 28.

    Adams RM, Yoast S, Mainzer SE, Moon K, Palombella AL, Estell DA, Power SD, Schmidt BF (1994) Characterization of two cold-sensitive mutants of the v-galactosidase from Lactobacillus delbrückii subsp. Bulgaricus. J Biol Chem 269:5666–5672

    CAS  Google Scholar 

  29. 29.

    Nadder de Macias ME, Manca de Nadra MC, Strasser de Saad AM, Pesce de Ruiz Holgado AA, Oliver G (1983) Isolation and properties of β-galactosidase of a strain of Lactobacillus helveticus isolated from natural whey starter. J Appl Biochem 5:275–281

    Google Scholar 

  30. 30.

    Tello-Solis SR, Jimenez-Guzman J, Sarabia-Leos C, Gomez-Ruiz L, Cruz-Guerrero AE, Rodriguez-Serrano G, García-Garibay M (2005) Determination of the secondary structure of Kluyveromyces lactis β-galactosidase by circular dichroism and its structure–activity relationship as a function of the pH. J Agric Food Chem 53:10200–10204

    Article  CAS  Google Scholar 

  31. 31.

    Vetere A, Paoletti S (1998) Separation and characterization of three β-galactosidases from Bacillus circulans. Biochim Biophys Acta 1380:223–231

    Article  CAS  Google Scholar 

  32. 32.

    Maischberger T, Leitner E, Nitisinprasert S, Juajun O, Yamabhai M, Nguyen TH, Haltrich D (2010) β-Galactosidase from Lactobacillus pentosus: purification, characterization and formation of galacto-oligosaccharides. Biotechnol J 5:838–847

    Article  CAS  Google Scholar 

  33. 33.

    De Roos A (2004) Industrial enzymes: enzymes in dairy applications. In: Aehle W (ed) Enzymes in industry, 2nd edn. Wilsey-VCH, Weinheim

  34. 34.

    Kim CS, Ji ES, Oh DK (2003) Expression and characterization of Kluyveromyces lactis β-galactosidase in Escherichia coli. Biotechnol Lett 25:1769–1774

    Article  CAS  Google Scholar 

  35. 35.

    Hsu CA, Yu RC, Chou CC (2006) Purification and characterization of a sodium-stimulated β-galactosidase from Bifidobacterium longum CCRC15708. World J Microbiol Biotechnol 22:355–361

    Article  Google Scholar 

  36. 36.

    Splechtna B, Nguyen TH, Steinböck M, Kulbe KD, Lorenz W, Haltrich D (2006) Production of prebiotic galacto-oligosaccharides from lactose using β-galactosidase from Lactobacillus reuteri. J Agric Food Chem 54:4999–5006

    Article  CAS  Google Scholar 

  37. 37.

    Rhimi M, Boisson A, Dejob M, Boudebouze S, Maguin E, Hasera R, Aghajaria N (2010) Efficient bioconversion of lactose in milk and whey: immobilization and biochemical characterization of a β-galactosidase from the dairy Streptococcus thermophilus LMD9 strain. Res Microbiol 161:515–525

    Article  CAS  Google Scholar 

  38. 38.

    Yi SH, Alli I, Park KH, Lee BH (2011) Overexpression and characterization of a novel transgalactosylic and hydrolytic β-galactosidase from a human isolate Bifidobacterium breve B24. New Biotechnol 28:806–813

    Article  CAS  Google Scholar 

Download references


This work was cofinanced by High-Tech Research and Development Program of China (No. 2011AA100903), National Natural Science Foundation of China (No. 31201422), Research Fund for the Doctoral Program of Higher Education of China, State Education Ministry (No. 20110097120028), Natural Science Foundation of Jiangsu Province (No. BK2011651), Youth Science and Technology Innovation Fund of Nanjing Agricultural Univerisity (No. KJ2010018) and was also supported by the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Conflict of interest


Compliance with Ethics Requirements

This article does not contain any studies with human or animal subjects.

Author information



Corresponding author

Correspondence to Mingsheng Dong.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zhang, H., Li, W., Rui, X. et al. Lactobacillus plantarum 70810 from Chinese paocai as a potential source of β-galactosidase for prebiotic galactooligosaccharides synthesis. Eur Food Res Technol 236, 817–826 (2013).

Download citation


  • Lactobacillus plantarum 70810
  • β-Galactosidase
  • Chinese paocai
  • Transgalactosylation
  • Galactooligosaccharides