European Food Research and Technology

, Volume 236, Issue 4, pp 725–733 | Cite as

Simultaneous pre-concentration of Pb and Sn in food samples and determination by atomic absorption spectrometry

  • Halil İbrahim Ulusoy
  • Ümmügülsüm Aksoy
  • Mehmet Akçay
Original Paper

Abstract

A cloud point extraction (CPE) method has been developed for the pre-concentration and simultaneous determination of lead [Pb(II)] and tin [Sn(II)] using Acridine Orange as complexing reagent and mediated by nonionic surfactant (Triton X-114) by flame atomic absorption spectrometry (FAAS). The main factors affecting analytical performance of CPE have been investigated in detail. The extracted surfactant-rich phase was diluted with (1.0 mol L−1) nitric acid in methanol, prior to subjecting FAAS. The calibration graphs obtained from Pb(II) and Sn(II) were linear in the concentration ranges of 5–1,000 and 10–5,000 μg L−1 with detection limits of 1.40 and 2.86 μg L−1, respectively. The relative standard deviations for 10 replicates containing 25 μg L−1 of Pb(II) and Sn(II) were 2.15 and 2.50 %, respectively. The analytical procedure was verified by the analysis of the standard reference materials NWTMDA-61.2 (water-trace elements) and NIST SRM 1548a (typical diet). The developed method has been applied to the simultaneous determination of total Pb and Sn in canned food samples including juices, tomato paste, corn, and green pea.

Keywords

Lead Tin Acridine Orange Cloud point extraction Food samples 

References

  1. 1.
    Turker AR (2012) Sep Purif Rev 41:169–206CrossRefGoogle Scholar
  2. 2.
    TS 266 (Turkish Standard) (2005) Water intended for human consumption (in Turkish), AnkaraGoogle Scholar
  3. 3.
    WHO (2008) Guidelines for drinking water quality, volume 1, recommendation. World Health Organization, GenevaGoogle Scholar
  4. 4.
  5. 5.
    Baysal A, Ozcan M, Akman S (2011) Food Chem Toxicol 49:1399–1403CrossRefGoogle Scholar
  6. 6.
    Ulusoy S, Ulusoy HI, Akçay M, Gürkan R (2012) Food Chem 134:419–426CrossRefGoogle Scholar
  7. 7.
    Zhu X, Zhu X, Wang B (2006) J Anal At Spectrom 21:69–73CrossRefGoogle Scholar
  8. 8.
    Huang X, Zhang W, Han S, Wang X (1997) Talanta 44:817–822CrossRefGoogle Scholar
  9. 9.
    Silva EL, Roldan PS, Giné MF (2009) J Hazard Mater 171(1–3):1133–1138CrossRefGoogle Scholar
  10. 10.
    Ortega C, Cerutti S, Roberto AO (2004) J Pharmaceut Biomed 36:721–727CrossRefGoogle Scholar
  11. 11.
    Manzoori JL, Bavili-Tabrizi A (2002) Anal Chim Acta 470:215–221CrossRefGoogle Scholar
  12. 12.
    Lemos VA, David GT (2010) Microchem J 94(1):42–47CrossRefGoogle Scholar
  13. 13.
    Ulusoy HI, Gürkan R, Aksoy U, Akçay M (2011) Microchem J 99:76–81CrossRefGoogle Scholar
  14. 14.
    Ulusoy HI, Gürkan R, Ulusoy S (2012) Talanta 88:516–523CrossRefGoogle Scholar
  15. 15.
    Ulusoy HI, Gürkan R, Demir O, Ulusoy S (2012) Food Anal Methods 5:454–463CrossRefGoogle Scholar
  16. 16.
    Sahin CA, Efecınar M, Satıroglu N (2010) J Hazard Mater 176:672–677CrossRefGoogle Scholar
  17. 17.
    Beceiro-González E, Guimaraes A, Alpendurad MF (2009) J Chromatogr A 1216(29):5563–5569CrossRefGoogle Scholar
  18. 18.
    Soylak M, Tuzen M (2008) J Hazard Mater 152:656–661CrossRefGoogle Scholar
  19. 19.
    Soylak M, Yilmaz E (2011) Desalination 275:297–301CrossRefGoogle Scholar
  20. 20.
    Bakircioglu Y, Bakircioglu D, Akman S (2010) J Hazard Mater 178:1015–1020CrossRefGoogle Scholar
  21. 21.
    Ghaedi M, Shokrollahi A, Niknam K, Niknama E, Najibi A, Soylak M (2009) J Hazard Mater 168:1022–1027CrossRefGoogle Scholar
  22. 22.
    Falcone RD, Correa NM, Biasutti MA, Silber JJ (2002) Langmuir 18:2039–2047CrossRefGoogle Scholar
  23. 23.
    Schuleman SG, Naik DV, Capomacchia AC, Roy TJ (1975) Pharm Sci 64:982–986CrossRefGoogle Scholar
  24. 24.
    Ghosh AK, Samanta A, Bandyopadhyay P (2011) J Phys Chem B 115:11823–11830CrossRefGoogle Scholar
  25. 25.
    Ghosh AK, Samanta A, Bandyopadhyay P (2011) Chem Phys Lett 507:162–167CrossRefGoogle Scholar
  26. 26.
    Baes CF, Messmer RE (1976) The hydrolysis constants occasions. Wiley-Interscience, New YorkGoogle Scholar
  27. 27.
    Luo YJ, Shen HX (1999) Anal Commun 36:135–137CrossRefGoogle Scholar
  28. 28.
    Madej K (2009) Trends Anal Chem 28:436–446CrossRefGoogle Scholar
  29. 29.
    Evdokimov E, Wandruska R (1998) Anal Lett 31:2289–2298CrossRefGoogle Scholar
  30. 30.
    Komaromy-Hiller G, Calkins N, Wandruszka R (1996) Langmuir 12(4):916–920CrossRefGoogle Scholar
  31. 31.
    Gholivanda MB, Babakhaniana A, Rafieeb E (2008) Talanta 76:503–508CrossRefGoogle Scholar
  32. 32.
    Madrakian T, Ghazizadeh F (2009) J Braz Chem Soc 20(8):1535–1540CrossRefGoogle Scholar
  33. 33.
    Tavallali H, Asrari E, Attaran AM, Tabandeh M (2010) Int J Chem Tech Res 2(3):1731–1737Google Scholar
  34. 34.
    Han H, Yayun X, Zhang C (2011) Commun Soil Sci Plan 42:1739–1751CrossRefGoogle Scholar
  35. 35.
    Shiri S, Delpisheh A, Haeri A, Poornajaf A, Golzadeh B, Shiri S (2011) Anal Chem Insights 6:15–20Google Scholar
  36. 36.
    Shemirani F, Abkenar SD, Khatouni A (2004) Bull Korean Chem Soc 25(8):1133–1136CrossRefGoogle Scholar
  37. 37.
    Citak D, Tuzen M (2010) Food Chem Toxicol 48:1399–1403CrossRefGoogle Scholar
  38. 38.
    Andrade FP, Nascentes CC, Costa LM (2009) J Braz Chem Soc 20(8):1460–1466CrossRefGoogle Scholar
  39. 39.
    Bakircioglu D (2012) Environ Sci Pollut Res 19(6):2428–2437CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Halil İbrahim Ulusoy
    • 1
  • Ümmügülsüm Aksoy
    • 2
  • Mehmet Akçay
    • 2
  1. 1.Department of Analytical Chemistry, Faculty of PharmacyCumhuriyet UniversitySivasTurkey
  2. 2.Department of Chemistry, Faculty of SciencesCumhuriyet UniversitySivasTurkey

Personalised recommendations